从基础到高级的 Java 学习资料全面汇总
本文汇总了Java学习的全面资料,涵盖Java基础、面向对象编程、核心知识、高级特性及常用框架,如Spring和Hibernate。内容包括技术详解、代码实例及学习资源推荐,助力从入门到精通Java编程,适合各阶段学习者参考。
Java 大视界 -- Java 大数据在智慧水利水资源调度与水情预测中的应用创新(180)
本文探讨了Java大数据技术在智慧水利中的创新应用,重点分析了其在水资源调度与水情预测中的关键技术与实践案例。通过大数据存储、实时处理与深度学习模型,Java有效提升了水利数据管理效率与水情预测准确性,助力传统水利向智能化转型。
京东商品列表API响应数据解析
京东商品列表API是京东开放平台的核心接口,支持开发者批量获取商品数据,适用于市场调研、竞品分析、推荐系统等场景。接口支持关键词搜索、分类筛选、价格区间等参数配置,返回商品名称、价格、销量、库存等信息,并具备高并发、实时更新等特性。
大数据之路:阿里巴巴大数据实践——离线数据开发
该平台提供一站式大数据开发与治理服务,涵盖数据存储计算、任务调度、质量监控及安全管控。基于MaxCompute实现海量数据处理,结合D2与DataWorks进行任务开发与运维,通过SQLSCAN与DQC保障代码质量与数据准确性。任务调度系统支持定时、周期、手动运行等多种模式,确保高效稳定的数据生产流程。
Java 17 及以上版本核心特性在现代开发实践中的深度应用与高效实践方法 Java 开发实践
本项目以“学生成绩管理系统”为例,深入实践Java 17+核心特性与现代开发技术。采用Spring Boot 3.1、WebFlux、R2DBC等构建响应式应用,结合Record类、模式匹配、Stream优化等新特性提升代码质量。涵盖容器化部署(Docker)、自动化测试、性能优化及安全加固,全面展示Java最新技术在实际项目中的应用,助力开发者掌握现代化Java开发方法。
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
跨境卖家必看!2025年1688图片搜索相似商品新功能解锁全球供应链
1688图片搜索商品接口支持通过上传图片查找相似商品,适用于电商选品、竞品分析与供应链溯源。具备高精度匹配与灵活筛选功能,可识别多角度及局部特征,并支持结合类目、价格、起订量等参数过滤结果,提升选品效率与购物体验。
1688商品列表API接口全解析:从关键词搜索到分页处理方案
1688商品列表数据接口用于获取1688平台商品信息,支持关键词、价格区间、销量范围及类目等条件筛选,返回标题、价格、销量等基本信息。接口采用HTTP/GET或POST请求,响应格式为JSON或XML。主要功能包括商品信息获取、筛选与排序、分页查询及店铺商品获取。调用时需构造参数(如app_key、sign等),并处理返回数据。常用参数有搜索关键词(q)、页码(page)、每页数量(pageSize)、价格区间(priceStart/priceEnd)和类目ID(categoryId)。适用于商家数据分析与运营优化。
跨境卖家必看!2025年1688API新功能解锁全球供应链
1688商品详情接口是阿里巴巴1688平台提供的API,用于获取商品标题、价格、库存、图片等详细信息。支持GET和POST请求,返回JSON格式数据,包含商品描述、商家信息等。适用于电商数据分析、比价系统等场景。调用流程包括申请权限、准备参数并发送请求、处理响应内容,需使用通用参数(如app_key、timestamp)和业务参数(如product_id)。该接口助力提升业务效率与决策准确性。
基于时间图神经网络多的产品需求预测:跨序列依赖性建模实战指南
本文展示了如何通过学习稀疏影响图、应用图卷积融合邻居节点信息,并结合时间卷积捕获演化模式的完整技术路径,深入分析每个步骤的机制原理和数学基础。
Spring Boot 3.x 现代化应用开发实战技巧与最佳实践
本指南基于Spring Boot 3.x,融合微服务、云原生与响应式编程等前沿技术,打造现代化应用开发实践。通过构建智能电商平台案例,涵盖商品、订单、用户等核心服务,展示Spring WebFlux、OAuth 2.0认证、Spring Cloud Gateway路由、GraalVM原生编译等技术实现。同时提供Docker/Kubernetes部署方案及性能优化策略,助您掌握从开发到生产的全流程。代码示例详实,适合进阶开发者参考。
深入浅出:微店商品详情API接口Python攻略
本教程介绍如何使用Python与微店商品详情API交互。首先,确保安装`requests`库(`pip install requests`)。接着,在微店开发者平台注册应用以获取API访问权限。然后,通过编写Python代码调用API,示例函数`get_weidian_product_detail`可传入商品ID和AppKey获取商品详情(如名称、价格、图片等)。最后,处理返回的JSON数据并注意错误处理和查阅最新API文档。按此步骤,即可顺利获取商品信息。
云计算SLA响应时间的matlab模拟与仿真
本项目基于MATLAB 2022a,模拟了排队理论中的FIFO(先入先出)队列模型。程序通过Poisson随机变量生成数据包流量,使用公式`q(t)=max(0,q(t-1)+a(t)-1)`计算缓冲区中数据包数量随时间的变化,并输出`q(t)`柱状图及时间差分析结果。核心算法结合M/M/1排队模型与Little's Law,评估响应时间受网络延迟、处理时间和队列等待等因素的影响,为云计算SLA性能优化提供理论支持。
核验身份证的一致性API的实战指南
随着网络空间安全问题日益突出,实名制成为保障安全与秩序的重要手段。探数API的身份证实名认证工具通过姓名和身份证号核验用户身份真实性,并返回扩展信息,广泛应用于各行业。本文介绍了其实现功能、调用流程及代码示例,同时解答了关于个人信息安全等常见疑问。接入该API不仅满足合规要求,更能提升用户信任,降低运营风险,共同构建安全高效的数字未来。
校招 Java 面试常见知识点及实战案例全解析
本文全面解析了Java校招面试中的常见知识点,涵盖Java新特性(如Lambda表达式、、Optional类)、集合框架高级应用(线程安全集合、Map性能优化)、多线程与并发编程(线程池配置)、JVM性能调优(内存溢出排查、垃圾回收器选择)、Spring与微服务实战(Spring Boot自动配置)、数据库与ORM框架(MyBatis高级用法、索引优化)、分布式系统(分布式事务、缓存应用)、性能优化(接口优化、高并发限流)、单元测试与代码质量(JUnit 5、Mockito、JaCoCo)以及项目实战案例(电商秒杀系统、社交消息推送)。资源地址: [https://pan.quark.cn/s
BayesFlow:基于神经网络的摊销贝叶斯推断框架
BayesFlow 是一个基于 Python 的开源框架,利用摊销神经网络加速贝叶斯推断,解决传统方法计算复杂度高的问题。它通过训练神经网络学习从数据到参数的映射,实现毫秒级实时推断。核心组件包括摘要网络、后验网络和似然网络,支持摊销后验估计、模型比较及错误检测等功能。适用于流行病学、神经科学、地震学等领域,为仿真驱动的科研与工程提供高效解决方案。其模块化设计兼顾易用性与灵活性,推动贝叶斯推断从理论走向实践。
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
算力引擎如何按下 AI 落地加速键?
本文探讨了AI时代企业对算力的新需求及应对策略,涵盖高吞吐与实时性、向量数据库挑战、隐私保护与成本控制等关键议题。文章还分析了垂直场景下的算力解决方案,如PolarDB的“Data+AI”理念和身份安全领域的多模态检测系统。同时介绍了英特尔至强六代处理器与阿里云G9i实例的创新实践,并展望了AI未来发展趋势,强调降低门槛、多元算力生态建设及端到端工程化思维的重要性。
NLP助力非结构化文本抽取:实体关系提取实战
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。
淘宝图片搜索API秘籍!轻松获取相似商品数据
淘宝图片搜索API是基于深度学习和计算机视觉技术的图片搜索工具,支持通过上传图片或URL搜索淘宝相似商品。其核心接口如`taobao.image.search`适用于电商购物、商品推荐及竞品分析等场景。该API具备高效性、准确性和易用性,用户只需提供一张图片即可快速获取相似商品,极大提升购物体验与效率。同时,商家也可借此优化商品展示以提高曝光率和销售机会。使用时,用户可通过Python代码调用API,上传图片并获取搜索结果。
高效处理多维数组:einsum()函数从入门到精通
本文深入解析了NumPy中的`einsum()`函数,从基础语法到高级应用全面展开。文章首先介绍了爱因斯坦求和约定的数学基础,解释了`einsum()`如何通过简洁的索引符号实现复杂的多维数组运算。
SmolDocling技术解析:2.56亿参数胜过70亿参数的轻量级文档处理模型
SmolDocling是由HuggingFace与IBM联合研发的超紧凑视觉模型,专为端到端文档转换设计。基于SmolVLM-256M开发,参数量仅2.56亿,却媲美大型模型性能。其核心创新在于DocTags格式,一种类XML标记语言,能全面表示文档内容与结构。SmolDocling通过端到端架构实现图像理解与文本生成整合,在文档分类、OCR、布局分析等任务中表现出色。评估显示,其在多项指标上优于大参数量模型,适用于资源受限场景,推动文档处理技术发展。
实战案例:采集 51job 企业招聘信息
本文基于Feapder框架,从零开始搭建企业级招聘信息爬虫管道。内容涵盖基础概念(数据管道与Feapder特点)、生动比喻(快递系统类比爬虫流程)、技术场景(代理IP、Cookie管理)及实战案例(采集51job岗位信息并分类存储)。通过完整代码示例,展示如何配置代理、自定义中间件及Pipeline。无论产品经理还是学生,均可轻松上手,构建高效稳定的爬虫系统。
淘宝天猫商品评论API接口指南
淘宝天猫商品评论API接口助您高效获取评论数据。首先注册淘宝开放平台账号并完成实名认证,接着创建应用、申请权限(如“tmall.item.evaluate.get”),最后用编程语言调用API。该接口支持多样化数据(用户昵称、评分、追评等)、灵活筛选与分页功能,并依托淘宝技术确保实时性和稳定性,满足数据分析需求。
淘宝天猫商品详情API接口攻略
淘宝天猫商品详情API接口是电商开发的重要工具,支持获取商品主图、价格、标题、销量及属性等详细信息。该接口广泛应用于电商数据分析与自动化购物领域。开发者可通过注册淘宝开放平台账号、申请权限并按照流程调用接口,实现商品基础信息、详情描述、图片视频资源、SKU属性及评价数据的查询。示例代码展示了如何使用Python调用此API,帮助快速上手开发。
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
抖音电商新篇章:douyin.item_get API接口的介绍
抖音商品详情API接口助力电商与数据分析!在电商短视频融合趋势下,抖音成为商品交易的重要平台。该API可合法高效获取商品详情(如名称、价格、评价等),帮助电商优化策略、分析人员挖掘市场趋势、开发者构建应用,推动业务增长。请求方式为HTTP(GET/POST),通过商品ID查询,返回JSON格式数据,灵活易用。
产品工作流程 - AxureMost
本文介绍了产品工作流程中的IPD(集成产品开发)流程,强调产品经理对整个产品过程的管控。IPD流程包含六个主要阶段:概念、计划、开发、验证、发布和生命周期管理,每个阶段都有明确目标、活动及决策评审点(DRP),以确保项目按目标推进并适应市场变化,提升产品开发成功率与市场响应速度。
零训练成本优化LLM: 11种LLM权重合并策略原理与MergeKit实战配置
随着大语言模型快速发展,如何优化性能同时降低计算成本成为关键问题。本文系统介绍了11种零训练成本的LLM权重合并策略,涵盖线性权重平均(Model Soup)、球面插值(SLERP)、任务算术、TIES-Merging等方法,通过MergeKit工具提供实战配置示例。无论研究者还是开发者,都能从中找到高效优化方案,在有限资源下实现模型性能显著提升。
手把手教你调用京东商品详情 API:从申请到数据抓取全流程
京东商品详情API为电商从业者、分析师及开发者提供高效数据支持,助力优化业务与研究。该接口具备丰富数据(商品属性、价格、描述、图片、评价等)与灵活请求方式(GET/POST),满足多样化需求,是数字化时代电商应用开发与分析的有力工具。
云上玩转DeepSeek系列之六:DeepSeek云端加速版发布,具备超高推理性能
作为国内首个千亿级开源 MoE 模型,DeepSeek-R1 凭借其卓越的代码生成与复杂推理能力,已成为开发者构建智能应用的首选。然而,原始模型在产业落地中面临严峻挑战,部署 671B 满血版模型不仅硬件门槛要求很高,同时吞吐效率和响应延迟也受到了制约。PAI 正式推出了优化版 DeepSeek-R1 模型 DeepSeek-R1-PAI-optimized,将大模型推理效率推向了 Next Level。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。