阿里云 AI 搜索开放平台新功能发布:新增GTE自部署模型
阿里云 AI搜索开放平台正式推出 GTE 多语言通用文本向量模型(iic/gte_sentence-embedding_multilingual-base)
Python 实战:用 API 接口批量抓取小红书笔记评论,解锁数据采集新姿势
小红书作为社交电商的重要平台,其笔记评论蕴含丰富市场洞察与用户反馈。本文介绍的小红书笔记评论API,可获取指定笔记的评论详情(如内容、点赞数等),支持分页与身份认证。开发者可通过HTTP请求提取数据,以JSON格式返回。附Python调用示例代码,帮助快速上手分析用户互动数据,优化品牌策略与用户体验。
【项目总结】快瞳医疗化验单的OCR识别
快瞳科技通过图像识别技术,成功解决了医疗化验单OCR识别难题。项目要求精准识别表格内容,尤其是化验数值和名称,准确率达85%以上。针对化验单来源多样、干扰因素多的问题,团队采用智能文档抽取模型、opencv技术(如霍夫变换)进行图片扶正与裁剪,优化识别精度。最终,项目不仅达到药企要求,还实现超越,为医疗行业智能化转型提供了高性价比解决方案,助力快瞳科技在医疗信息化领域树立良好口碑。
DAPO: 面向开源大语言模型的解耦裁剪与动态采样策略优化系统
DAPO(Decoupled Clip and Dynamic Sampling Policy Optimization)是由字节跳动提出的一种突破性的开源大语言模型强化学习系统。基于Qwen2.5-32B基础模型,DAPO在AIME 2024测试中以50分的优异成绩超越了现有最佳模型,
linux命令详细说明以及案例
本文介绍了常用的 Linux 命令及其详细说明和示例,包括:`ls`(列出目录内容)、`cd`(更改目录)、`rm` 和 `mv`(删除与移动文件)、`grep`(搜索文本)、`cat`(显示文件内容)以及 `chmod`(更改文件权限)。每个命令均配有功能描述、选项说明及实际案例,帮助用户更好地掌握 Linux 命令的使用方法。
AI大模型运维开发探索第四篇:智能体分阶段演进路线
本文探讨了智能体工程的演进历程,从最初的思维链(智能体1.0)到实例化智能体(智能体2.0),再到结构化智能体(智能体3.0),最终展望了自演进智能体(智能体4.0)。文章详细分析了各阶段遇到的问题及解决策略,如工具调用可靠性、推理能力提升等,并引入了大模型中间件的概念以优化业务平台与工具间的协调。此外,文中还提到了RunnableHub开源项目,为读者提供了实际落地的参考方案。通过不断迭代,智能体逐渐具备更强的适应性和解决问题的能力,展现了未来AI发展的潜力。
淘宝图片搜索商品列表API接口全攻略
淘宝图片搜索API(拍立淘)通过上传图片快速检索淘宝/天猫相似商品,支持标题、价格、销量等信息返回。核心功能包括以图搜图、商品筛选和分页查询,具备高效性、准确性和多语言支持。开发者需注册账号、创建应用并申请权限后调用接口,适用于电商平台、比价工具等场景。
Hologres × PAI × DeepSeek 搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于DeepSeek大模型的RAG(检索增强生成)服务,并关联Hologres引擎实例。Hologres与阿里云自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时的向量计算能力。通过PAI-EAS,用户可以一键部署集成了大语言模型和RAG技术的对话系统服务,显著缩短部署时间,并提高问答质量。部署步骤包括准备Hologres向量检索库、部署基于DeepSeek的RAG服务、通过WebUI进行模型推理验证,以及通过API调用进行模型推理验证。Hologres还提供了特色功能支持,如高性能向量计算等。
一个项目能长期活下去,靠的从来不是模型
AI项目成败关键不在模型强弱,而在于系统性生存能力:厘清责任边界、接纳不确定性、严控复杂度、建立止损机制、允许模型“不万能”、并在模型成功时保持克制。真正活久的项目,清醒、务实、敬畏现实。
智能体对传统行业冲击:中后台,才是产业重塑的第一现场
本文探讨AI从“流程自动化”迈向“认知自主化”后,对传统行业结构性变革的影响:中后台(非一线岗位)正率先被智能体重构——因其任务具数字原生性、决策密度高、协调成本大。供应链、财务、人力三大场景首当其冲。组织正加速演进为“沙漏型”:价值重心转向决策自动化与智能体策略成熟度。(239字)
RAG 不是万能解,这些场景你一开始就不该用
RAG并非万能,默认滥用反致系统复杂、效果难测。它仅解决“信息获取”,不提升模型能力。最适合四类场景:动态知识更新、需答案溯源、长尾问题密集、需求尚不明确。慎用于强推理、隐性经验、高实时性及高确定性要求场景。核心判断:问题是“找不到信息”,还是“不会处理信息”?
别再刷短视频了!你的赛博替身正在工厂拧螺丝:揭秘 AI Agent 搭建师
本文揭秘AI Agent搭建师这一新兴职业:不教人用AI,而是教人“克隆”24小时在线、永不摸鱼的数字分身。涵盖认知架构、提示词工程、RAG增强、自动化流、工具调用、自主循环、记忆持久化等12大核心能力,揭示如何将AI从聊天机器人升级为可落地的“数字合伙人”。
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
用户零等待指标交付,逻辑变更分钟级生效,无需 ETL;100%一致口径,所有人与 AI 通过同一语义层访问数据;无缝对接 AI,语义层为 AI 提供标准化查询 API。
1688商品列表API接口快速上手指南
本文介绍如何通过1688开放平台官方API,合规高效地获取店铺商品列表数据。以`item_search_shop`接口为例,详解请求参数、签名生成规则与调用限制,结合Python实战实现稳定采集。强调签名安全、频率控制与数据合规使用,助力B2B电商分析、选品监控等场景高效落地。(238字)
大模型从“瞎聊”到“干活”:指令微调核心逻辑全拆解
本文深入浅出解析大模型指令微调核心技术,从“能聊”到“会干”的关键跃迁。通过“教小孩做事”类比,拆解指令微调原理,详解数据格式、质量与策略三要素,提供16G显卡可跑的四步实操流程,并结合效果评估与未来趋势,助力新手快速掌握让大模型精准执行任务的核心方法。
Python | K折交叉验证的参数优化的支持向量机回归(SVR)预测及可视化算法
本教程系统讲解基于Python的SVR回归预测,涵盖数据处理、模型训练、K折交叉验证及贝叶斯、随机、网格搜索等参数优化方法,适用于多领域回归任务,附完整代码与可视化实现。
基于深度学习的驾驶员行为检测系统
本研究聚焦基于深度学习的驾驶员行为检测系统,针对传统传感器方法局限,提出融合YOLOv8与计算机视觉的新方案,实现对疲劳、分心驾驶等行为的精准实时识别,提升行车安全,推动智能交通与自动驾驶发展。
【AI大模型面试宝典七】- 训练优化篇
【AI大模型面试宝典】聚焦强化学习核心考点:从MDP、贝尔曼方程到策略梯度、Actor-Critic框架,详解价值函数、优势函数与GAE等高频概念,结合蒙特卡洛与TD方法的偏差方差权衡,助你系统掌握RL原理与面试要点,轻松应对大模型算法挑战!
北斗GPS卫星授时服务器运行介绍
北斗GPS授时服务器通过接收GNSS卫星信号,利用NTP/PTP协议输出精准时间,部分设备如SYN2136系列还支持串口RMC语句输出。本文介绍冷启动(需数分钟)、温启动(数十秒至数分钟)、热启动(数秒)的区别,以及常用通信语句GGA与RMC的对比。RMC提供位置、速度、航向和时间等全面信息,更适用于导航等综合场景,而GGA主要用于基础定位。根据需求选择合适模式与语句,可提升授时效率与精度。(238字)
京东商品评论API使用指南
京东商品评论API是京东开放平台提供的核心接口,用于查询指定SKU的用户评论数据,涵盖评分、内容、晒单图片、追评等信息。适用于电商分析、口碑监控等场景。需通过京东联盟申请appkey/appsecret授权调用,遵循平台规则与频率限制,严禁非合规爬取。
十、HQL:排序、联合与 CTE 高级查询
Hive 查询不仅能查,还能查得漂亮、高效。我们这次聚焦 HQL 中的高级技巧——从 ORDER BY 到 SORT BY、DISTRIBUTE BY 与 CLUSTER BY,带你理解排序在分布式环境中的执行逻辑;再深入讲解 UNION 与 CTE 等查询组织方式,帮你将复杂 SQL 拆解得更清晰。我还特意写了丰富示例与实战练习,适合正在提升 Hive 查询能力的你阅读、收藏和练习。
七、深入 Hive DDL:管理表、分区与洞察元数据
在日常使用 Hive 的过程中,我们不仅要会建表,更要学会灵活地维护和管理已有的数据结构。从添加字段到修改分区,从查看元数据到删除表或清空数据,掌握这些 DDL 操作和常用的 SHOW 命令,就像掌握了一套管理数据仓库的“万能钥匙”。这次将带你一步步熟悉这些命令的用法和实际应用场景,配合清晰的语法示例与练习题,帮助你更轻松地驾驭 Hive 数据管理的日常工作。
1688图片搜索相似商品API指南
1688图片搜索相似商品API基于图像识别技术,支持通过图片查找平台内相似商品,提供商品信息与相似度评分,适用于以图搜货、比价、供应链寻源等场景,提升采购效率。
打破 IK 分词“架构陷阱”——阿里云 ES Serverless 索引级词典的完美热更新实践
本文将通过一个真实事故的复盘,解析开源 IK 分词器架构设计中的不足,并介绍阿里云 ES Serverless 如何通过“索引级词典”能力,彻底解决热更新引发的搜索错配问题。
活动报名 | Apache Spark Meetup · 上海站,助力企业构建高效数据平台
2025年12月20日,上海 · 阿里巴巴徐汇滨江园区,Apache Spark Meetup 助力企业构建高效数据平台,欢迎报名!
AI 十大论文精讲(六):拆解 LLM 智能体的 “通用密码”
本文解读复旦NLP团队2023年重磅综述《The Rise and Potential of Large Language Model Based Agents》,系统剖析LLM智能体“大脑-感知-行动”三大核心模块,涵盖单智能体、多智能体、人机协作与智能体社群四大应用场景,提炼工具SKMA体系、安全护栏、结果检查三大落地要点,并提出AGI路径、虚拟到物理迁移等开放问题,为构建通用智能体提供统一范式,被誉为该领域“入门圣经”。
发票验真API:基于权威数据源与阿里云平台的发票验真代码解析
发票验真迈向智能化新阶段,融合OCR识别与权威查验平台,实现全票种自动化验真。一站式接口高效、安全、可溯,支持批量处理与高并发调用,显著提升效率、降低合规风险,助力企业构建智能财税风控体系。(238字)
企业级 AI 数据分析“专家”——Data Agent 推动数据分析民主化
Data Agent(数据智能体)正从辅助工具向企业核心数据分析中枢演进,推动“人人都是分析师”的愿景落地。
AI 十大论文精讲(三):RLHF 范式奠基 ——InstructGPT 如何让大模型 “听懂人话”
本文解读AI十大核心论文之二——《Training Language Models to Follow Instructions with Human Feedback》。该论文提出RLHF框架,通过“监督微调-奖励建模-强化学习”三步法,首次实现大模型与人类意图的有效对齐,推动GPT-3进化为更安全、可信的InstructGPT,奠定ChatGPT等后续模型的技术基石,开启大模型“从博学到好用”的新时代。
闲鱼商品详情API接口指南
闲鱼商品详情API(Goodfish.item_get)为开发者提供通过商品ID获取标题、价格、图片、卖家等信息的接口,采用RESTful风格与JSON格式,支持价格监控、数据分析及第三方应用集成。
基于python大数据的高考志愿推荐系统
本研究基于数据挖掘技术,结合Django、Vue.js与MySQL等技术构建高考志愿推荐系统,整合高校信息与历年录取数据,通过算法模型为学生提供个性化、科学化的志愿填报建议,提升决策准确性与教育资源配置效率。
亚马逊商品详情 API 秘籍!轻松获取 SKU 属性数据
亚马逊商品详情API是官方接口,通过ASIN获取商品标题、价格、库存、评价等50余项数据,支持多站点查询。包含Product Advertising API与MWS两类,分别用于商品信息获取和卖家店铺管理,采用AWS4-HMAC-SHA256认证,保障请求安全。
UPN512技术架构白皮书
随着AI算力超节点的演进,xPU Scale up 系统遇到新的挑战,基于此,阿里云提出UPN(Ultra Performance Network)架构,旨在构建“大规模、高性能、高可靠、低成本、可扩展” 的 Scale up 网络系统,本文阐述UPN512系统的关键架构设计。
搭建实时足球比分系统从零到一的实战指南
构建实时足球比分系统需聚焦数据流架构:从API/爬虫获取数据,经后端处理存储,通过REST/WebSocket提供接口,前端展示。推荐使用专业API保障稳定性,结合Python/Node.js、PostgreSQL/MongoDB、Redis缓存与WebSocket实现实时推送。优先考虑法律合规与高并发应对,建议逐步迭代开发,亦可借助现成插件或服务快速上线。(238字)
从零搭建RAG应用:跳过LangChain,掌握文本分块、向量检索、指代消解等核心技术实现
本文详解如何从零搭建RAG(检索增强生成)应用,跳过LangChain等框架,深入掌握文本解析、分块、向量检索、对话记忆、指代消解等核心技术,提升系统可控性与优化能力。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。