【AI大模型面试宝典二】— 基础架构篇

简介: 【AI大模型面试宝典】聚焦分词器核心考点!详解BPE、WordPiece、SentencePiece原理与实战,覆盖中文分词最佳实践、词汇表构建、特殊标记处理,助你轻松应对高频面试题,精准提升offer竞争力!

【AI大模型面试宝典系列】从面试高频考点到核心原理拆解,从实战代码到避坑指南,帮你吃透大模型面试的每一个得分点!后续会逐个攻破面试核心模块:基础概念、架构细节、项目实操、行业题套路…… 每篇聚焦一个必考点,既能快速补短板,也能精准练重点 —— 想搞定大模型面试、无痛拿下offer?这系列直接码住!

您的认可将会鼓励我更高频、更高质量的完成图文输出,您的批评也将会让我的博文更精准。
所以,不要吝啬您的评价、点赞

🔤 分词器详解

🎯 概述
分词器(Tokenizers)是将文本转换为模型可理解的数字序列的关键组件,直接影响模型的性能和效率。
🏗️ 主流分词算法
1️⃣ BPE (Byte Pair Encoding)
原理:通过合并高频字符对来构建词汇表
优点:
有效处理未登录词
词汇量可控
多语言支持好
缺点:
可能产生不完整的词
对中文支持有限
实现示例:

from tokenizers import Tokenizer
from tokenizers.models import BPE

tokenizer = Tokenizer(BPE(unk_token="[UNK]"))

2️⃣ WordPiece
原理:基于最大似然估计逐步合并词片段
特点:
Google开发,用于BERT
在词前添加##标记子词
更适合英文

3️⃣ SentencePiece
原理:将文本视为Unicode序列,不依赖空格分词
优势:
语言无关性
支持中文、日文等无空格语言
可逆转换

📊 算法对比
image.png

🎯 实战应用
中文分词最佳实践

# 使用SentencePiece处理中文
import sentencepiece as spm

# 训练中文分词器
spm.SentencePieceTrainer.train(
    input='chinese_corpus.txt',
    model_prefix='chinese_sp',
    vocab_size=32000,
    character_coverage=0.995,  # 覆盖99.5%字符
    model_type='bpe'
)

# 使用分词器
sp = spm.SentencePieceProcessor(model_file='chinese_sp.model')
tokens = sp.encode('大模型面试宝典', out_type=str)
print(tokens)  # ['大', '模型', '面试', '宝典']

🔍 技术细节
词汇表构建流程
预处理:清洗文本,标准化
训练:基于语料库学习分词规则
验证:检查分词质量
优化:调整超参数
特殊标记处理
[PAD]:填充标记
[UNK]:未知词标记
[CLS]:分类标记
[SEP]:分隔标记
[MASK]:掩码标记(用于MLM)

📚 深入阅读
注意力机制详解
主流大模型结构

🎯 面试重点
BPE和WordPiece的区别?
如何处理中文分词?
词汇表大小如何选择?
OOV(未登录词)问题如何解决?

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2天前
|
人工智能 安全 API
AI 大语言模型(LLM)API 调用进阶:从闭源大模型 LLM API 到开源大模型 API 本地部署,接入路径全解析
在 2026 年的今天,大模型(LLM)已经成为开发者的标配工具。但面对 OpenAI、国产模型、本地部署等多种技术路径,开发者该如何抉择?本文将从工程实践角度,深入剖析国际主流 API、国产 API、本地开源部署以及聚合 API 四种主流方案的优劣,并提供完整的 Python 实战代码,助你构建最优的 AI 应用架构。
144 5
|
2天前
|
人工智能 JSON API
AI 大模型 LLM API + n8n 工作流:打造超级 AI Agent 自动化(2026年 LLM agent 最强指南)
本文将集众家之长,不仅提供保姆级的 n8n 接入教程,更将深入探讨大模型 LLM API 稳定性、成本控制以及国内环境下的最佳实践方案。
167 4
|
17天前
|
人工智能 运维 安全
GPT-5.2 Codex来了:能独立跑7+小时的AI程序员,老金手把手教你玩转
OpenAI发布GPT-5.2 Codex,支持异步自主编程,7小时持续任务不断线。采用上下文压缩技术,胜任复杂重构与安全审计。对比Claude Code的同步交互,Codex更像远程员工,适合甩手任务。Plus用户可免费体验,API性价比高,配合本地工具高效开发。
GPT-5.2 Codex来了:能独立跑7+小时的AI程序员,老金手把手教你玩转
|
2天前
|
机器学习/深度学习 监控 算法
基于深度学习的车牌识别系统
在智能交通快速发展背景下,传统车牌识别技术受限于复杂环境,难以满足高精度需求。深度学习凭借强大特征学习能力,显著提升识别准确率与鲁棒性,成为主流技术方向。本文综述基于YOLOv8等先进模型的研究进展,探讨系统实现关键步骤,推动智慧交通与城市治理智能化升级。
|
2天前
|
人工智能 JSON 自然语言处理
【2026最新最全】从零开始学 Trae:我的第一个贪吃蛇小游戏实战
Trae是字节跳动推出的AI原生代码编辑器,支持智能补全、自动修Bug、多语言开发,集成doubao、DeepSeek等大模型,提供国内版与国际版,助力开发者高效编程。
91 8
|
2月前
|
人工智能 自然语言处理 开发者
周报不是流水账,这个AI指令帮你写出让老板点赞的工作汇报
一个帮助技术人快速生成专业工作周报的AI指令,通过结构化输入和价值导向表达,让你的周报从流水账变成让老板点赞的高质量汇报,15分钟搞定原本需要1小时的周报撰写。
836 80
|
2天前
|
机器学习/深度学习 人工智能 缓存
【AI大模型面试宝典三】- 基础架构篇
【AI大模型面试宝典】聚焦注意力机制核心考点,详解自注意力、多头、交叉、GQA/MQA等架构原理与代码实现,剖析复杂度、面试高频题与工业应用,助你系统掌握Transformer核心技术,直通大模型offer!#AI面试 #深度学习
24 0
|
2天前
|
人工智能 C++
【AI大模型面试宝典十一】- 评估应用篇
【AI大模型面试宝典】聚焦高频考点,拆解核心原理!涵盖基础能力、对齐与效率评估,详解MMLU、C-Eval、HumanEval等基准,教你应对幻觉检测、指标设计等面试难题。代码实操+避坑指南,助你精准拿分,offer到手!点赞关注,持续更新中→ #大模型面试 #AI求职
27 0
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型面试宝典
【AI大模型面试宝典】聚焦Transformer核心架构,拆解自注意力、多头机制、位置编码等高频考点,配代码实现与面试真题解析,助你快速掌握大模型面试关键知识点,无痛拿下offer!
43 0
|
2天前
|
机器学习/深度学习 人工智能
【AI大模型面试宝典四】- 基础架构篇
【AI大模型知识干货系列】深度解析Transformer位置编码:从绝对到相对,拆解Sinusoidal、RoPE、ALiBi等核心机制,对比优劣,直击面试高频问题。每篇聚焦一个知识点,助你系统掌握大模型关键技术,紧跟AI浪潮!欢迎关注、点赞、批评指正~
36 0