【玩转数据系列七】有娃的注意了,机器学习教您如何提高孩子学习成绩

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 母亲是老师反而会对孩子的学习成绩造成不利影响?能上网的家庭,孩子通常能取得较好的成绩?影响孩子成绩的最大因素居然是母亲的学历?本文通过机器挖掘算法和中学真实的学生数据为您揭秘影响中学生学业的关键因素有哪些。

(本文数据为实验用例)

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2

一、背景

母亲是老师反而会对孩子的学习成绩造成不利影响?能上网的家庭,孩子通常能取得较好的成绩?影响孩子成绩的最大因素居然是母亲的学历?本文通过机器挖掘算法和中学真实的学生数据为您揭秘影响中学生学业的关键因素有哪些。

本文的数据采集于某中学在校生的家庭背景数据以及在校行为数据。通过逻辑回归算法生成离线模型和学业指标评估报告,并且可以对学生的期末成绩进行预测。同时,生成在线预测API,可以通过API把训练好的离线模型应用到在线的业务场景中。

二、数据集介绍

数据集由25个特征和一个打标数据构成,

具体字段如下:

字段名 含义 类型 描述
sex 性别 string F是女,M表示男
address 住址 string U表示城市,R表示乡村
famsize 家庭成员数 string LE3表示少于三人,GT3多于三人
pstatus 是否与父母住在一起 string T住在一起,A分开
medu 母亲的文化水平 string 从0~4逐步增高
fedu 父亲的文化水平 string 从0~4逐步增高
mjob 母亲的工作 string 分为教师相关、健康相关、服务业
fjob 父亲的工作 string 分为教师相关、健康相关、服务业
guardian 学生的监管人 string mother,father or other
traveltime 从家到学校需要的时间 double 以分钟为单位
studytime 每周学习时间 double 以小时为单位
failures 挂科数 double 挂科次数
schoolsup 是否有额外的学习辅助 string yes or no
fumsup 是否有家教 string yes or no
paid 是否有相关考试学科的辅助 string yes or no
activities 是否有课外兴趣班 string yes or no
higher 是否有向上求学意愿 string yes or no
internet 家里是否联网 string yes or no
famrel 家庭关系 double 从1~5表示关系从差到好
freetime 课余时间量 double 从1~5从少到多
goout 跟朋友出去玩的频率 double 从1~5从少到多
dalc 日饮酒量 double 从1~5从少到多
walc 周饮酒量 double 从1~5从少到多
health 健康状况 double 从1~5从状态差到好
absences 出勤量 double 0到93次
g3 期末成绩 double 20分制

数据截图:

三、离线训练

首先,实验流程图:

数据自上到下流入,先后经历了数据数据预处理、拆分、训练、预测与评估。

1.SQL脚本-数据预处理

select (case sex when 'F' then 1 else 0 end) as sex,
(case address when 'U' then 1 else 0 end) as address,
(case famsize when 'LE3' then 1 else 0 end) as famsize,
(case Pstatus when 'T' then 1 else 0 end) as Pstatus,
Medu,
Fedu,
(case Mjob when 'teacher' then 1 else 0 end) as Mjob,
(case Fjob when 'teacher' then 1 else 0 end) as Fjob,
(case guardian when 'mother' then 0 when 'father' then 1 else 2 end) as guardian,
traveltime,
studytime,
failures,
(case schoolsup when 'yes' then 1 else 0 end) as schoolsup,
(case fumsup when 'yes' then 1 else 0 end) as fumsup,
(case paid when 'yes' then 1 else 0 end) as paid,
(case activities when 'yes' then 1 else 0 end) as activities,
(case higher when 'yes' then 1 else 0 end) as higher,
(case internet when 'yes' then 1 else 0 end) as internet,
famrel,
freetime,
goout,
Dalc,
Walc,
health,
absences,
(case  when G3>14 then 1 else 0 end) as finalScore
from ${t1};

这里SQL脚本主要处理的逻辑是将文本数据结构化。比如说源数据分别有yes和no的情况,我们可以通过0表示yes,1表示no将文本数据量化。一些多种类的文本型字段,比如说Mjob,我们可以结合业务场景来抽象,比如说如果工作是teacher就表示为1,不是teacher表示为0,抽象后这个特征的意义就是表示工作是否与教育相关。对于目标列,我们按照大于18分设为1,其它为0,拟在通过训练,找出可以预测分数的模型。

2.归一化

去量纲,将所有的字段都转换成0~1之间,去除字段间大小不均衡带来的影响。结果图:

3.拆分

将数据集按照8:2拆分,百分之八十用来训练模型,剩下的用来预测。

4.逻辑回归

通过逻辑回归算法训练生成离线模型。具体算法详情可以https://en.wikipedia.org/wiki/Logistic_regression

5.结果分析和评估

通过混淆矩阵可以查看模型预测的准确率。

可以看到预测准确率为82.911%。
根据逻辑回归算法的特性,我们可以通过模型系数挖掘出一些比较有意思的信息,首先查看模型:

根据逻辑回归算法的算法特性,权重越大表示特征对于结果的影响越大,权重是正数表示对结果1(期末高分)正相关,权重负数表示负相关。于是我们可以挑选几个权重较大的特征进行分析。

字段名 含义 权重 分析
mjob 母亲的工作 -0.7998341777833717 母亲是老师对于孩子考高分是不利的
fjob 父亲工作 1.422595764037065 如果父亲是老师,对于孩子取得好的成绩是非常有利的
internet 家里是否联网 1.070938672974736 家里联网不但不会影响成绩,还会促进孩子的学习
medu 母亲的文化水平 2.196219307541352 母亲的文化水平高低对于孩子的影响是最大的,母亲文化越高孩子学习越好。

以上结论只是从实验的很小的数据集得到的结论,仅供参考。

四、在线预测部署

生成离线模型之后,可以将离线模型部署到线上,通过调用restful-api来进行在线预测。

1.部署

右键模型-》在线部署模型-》选择cpu、memory-》部署完成

部署成功后显示

之后在API调试页即可通过填写body信息调用API,并拿到预测结果。

四、其它

作者微信公众号(与作者讨论):

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

联系我们: aohai.lb@alibaba-inc.com

往期文章:

【玩转数据系列一】人口普查统计案例

【玩转数据系列二】机器学习应用没那么难,这次教你玩心脏病预测

【玩转数据系列三】利用图算法实现金融行业风控

【玩转数据系列四】听说啤酒和尿布很配?本期教你用协同过滤做推荐

【玩转数据系列五】农业贷款发放预测

【玩转数据系列六】文本分析算法实现新闻自动分类

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
28天前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
27 2
|
2月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
58 3
|
2月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
30 2
|
3月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
2月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
3月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
263 8
|
2月前
|
机器学习/深度学习 算法 数据建模
【机器学习】类别不平衡数据的处理
【机器学习】类别不平衡数据的处理
|
4月前
|
缓存 开发者 测试技术
跨平台应用开发必备秘籍:运用 Uno Platform 打造高性能与优雅设计兼备的多平台应用,全面解析从代码共享到最佳实践的每一个细节
【8月更文挑战第31天】Uno Platform 是一种强大的工具,允许开发者使用 C# 和 XAML 构建跨平台应用。本文探讨了 Uno Platform 中实现跨平台应用的最佳实践,包括代码共享、平台特定功能、性能优化及测试等方面。通过共享代码、采用 MVVM 模式、使用条件编译指令以及优化性能,开发者可以高效构建高质量应用。Uno Platform 支持多种测试方法,确保应用在各平台上的稳定性和可靠性。这使得 Uno Platform 成为个人项目和企业应用的理想选择。
73 0
|
4月前
|
机器学习/深度学习 缓存 TensorFlow
TensorFlow 数据管道优化超重要!掌握这些关键技巧,大幅提升模型训练效率!
【8月更文挑战第31天】在机器学习领域,高效的数据处理对构建优秀模型至关重要。TensorFlow作为深度学习框架,其数据管道优化能显著提升模型训练效率。数据管道如同模型生命线,负责将原始数据转化为可理解形式。低效的数据管道会限制模型性能,即便模型架构先进。优化方法包括:合理利用数据加载与预处理功能,使用`tf.data.Dataset` API并行读取文件;使用`tf.image`进行图像数据增强;缓存数据避免重复读取,使用`cache`和`prefetch`方法提高效率。通过这些方法,可以大幅提升数据管道效率,加快模型训练速度。
52 0
|
4月前
|
机器学习/深度学习 SQL 数据采集
"解锁机器学习数据预处理新姿势!SQL,你的数据金矿挖掘神器,从清洗到转换,再到特征工程,一网打尽,让数据纯净如金,模型性能飙升!"
【8月更文挑战第31天】在机器学习项目中,数据质量至关重要,而SQL作为数据预处理的强大工具,助力数据科学家高效清洗、转换和分析数据。通过去除重复记录、处理缺失值和异常值,SQL确保数据纯净;利用数据类型转换和字符串操作,SQL重塑数据结构;通过复杂查询生成新特征,SQL提升模型性能。掌握SQL,就如同拥有了开启数据金矿的钥匙,为机器学习项目奠定坚实基础。
40 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI