【AI大模型面试宝典四】- 基础架构篇

简介: 【AI大模型知识干货系列】深度解析Transformer位置编码:从绝对到相对,拆解Sinusoidal、RoPE、ALiBi等核心机制,对比优劣,直击面试高频问题。每篇聚焦一个知识点,助你系统掌握大模型关键技术,紧跟AI浪潮!欢迎关注、点赞、批评指正~

【AI大模型知识干货系列】从基础原理到实战应用,从技术迭代到行业落地,拆解大模型核心逻辑,破除认知壁垒。后续将持续输出单篇深度内容,涵盖入门科普、技术解析、场景案例、避坑指南等干货,助力你系统掌握AI大模型相关知识,跟上技术浪潮~ 每一篇都经过精心打磨,聚焦一个核心知识点,通俗易懂且兼具深度,欢迎持续关注!

您的认可将会鼓励我更高频、更高质量的完成图文输出,您的批评也将会让我的博文更精准。
所以,不要吝啬您的评价、点赞

📍 位置编码详解

🎯 概述
位置编码为Transformer提供序列位置信息,因为注意力机制本身不包含位置概念。
🏗️ 位置编码类型
1️⃣ 绝对位置编码
可学习位置编码
原理:将位置作为可训练参数
优点:简单直接,可适应任务
缺点:固定长度,泛化性差
Sinusoidal位置编码
原理:使用正弦和余弦函数
公式:
image.png

2️⃣ 相对位置编码
RoPE (旋转位置编码)
原理:通过旋转矩阵编码相对位置
优点:支持任意长度,相对位置感知
应用:LLaMA、ChatGLM等
ALiBi (Attention with Linear Biases)
原理:在注意力分数中添加线性偏置
优点:外推能力强,计算高效
应用:BLOOM、MPT等
📊 编码方法对比
image.png

🎯 面试重点
为什么需要位置编码?
RoPE相比绝对位置编码的优势?
如何处理超出训练长度的序列?

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
1天前
|
人工智能 文字识别 自然语言处理
数智化改造ERP的真实实操记录:从传统到智能的落地过程
本文分享了基于JBoltAI框架对传统ERP系统进行低侵入式数智化改造的实战经验。针对数据录入繁琐、流程协同不畅、决策缺乏支撑等痛点,通过集成AI能力,实现采购合同解析、库存智能预警、财务自动报销、生产智能助手等场景自动化。依托JBoltAI的文档处理、RAG知识库、Agent智能体与Function调用等特性,在不重构原有SpringBoot架构的前提下,完成AI赋能,显著提升效率与决策水平,为传统ERP转型提供可复用的技术路径。
24 0
|
1天前
|
人工智能 缓存 API
在科研与项目开发中如何高效调用国内国外 AI 大语言模型 LLM API
本文剖析大模型应用从Demo到生产落地的三大核心痛点:账号支付难、网络不稳定、API碎片化。通过对比自建方案、开源网关与托管式AI网关(如n1n.ai),揭示如何以工程化手段实现稳定、高效、低成本的LLM调用,助力科研与开发跨越“Hello World”到生产环境的鸿沟。
57 9
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型面试宝典
【AI大模型面试宝典】聚焦Transformer核心架构,拆解自注意力、多头机制、位置编码等高频考点,配代码实现与面试真题解析,助你快速掌握大模型面试关键知识点,无痛拿下offer!
38 0
|
1天前
|
存储 人工智能 Serverless
AI时代最大的宝藏,也藏得最深:80%的企业知识沉睡在非结构化数据中
2026年AI进入应用爆发期,但非结构化数据成为瓶颈。Hologres推出AI原生新架构HSAP 2.0,融合语义搜索、多维分析与Serverless弹性,打造统一数据平面,让企业海量数据高效赋能AI,破解“数据熵”难题,支撑智能客服、销售助手等复杂场景,实现从“为人服务”到“为AI服务”的跨越。
|
1天前
|
人工智能 搜索推荐 数据可视化
引入了AI大模型开发客服对话质量评估助手
摘要: 本文介绍了基于JBoltAI开发的“客服对话质量智能评估助手”项目,旨在解决传统人工质检效率低、标准不一、隐性问题难识别及数据沉淀困难等痛点。系统通过多渠道对话自动采集、AI驱动的语义解析与情感分析、多维度智能评分及个性化整改建议生成,实现了全量对话的高效、客观评估。项目采用低侵入式架构,无缝对接现有Java客服系统,显著提升质检效率(日均千条对话1小时内完成评估)、统一评估标准、精准识别服务短板,并通过结构化数据支撑团队优化。上线后用户投诉下降35%,后续将拓展语音情绪分析、智能培训推荐等功能。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型面试宝典二】— 基础架构篇
【AI大模型面试宝典】聚焦分词器核心考点!详解BPE、WordPiece、SentencePiece原理与实战,覆盖中文分词最佳实践、词汇表构建、特殊标记处理,助你轻松应对高频面试题,精准提升offer竞争力!
25 0
|
1天前
|
机器学习/深度学习 人工智能 缓存
【AI大模型面试宝典三】- 基础架构篇
【AI大模型面试宝典】聚焦注意力机制核心考点,详解自注意力、多头、交叉、GQA/MQA等架构原理与代码实现,剖析复杂度、面试高频题与工业应用,助你系统掌握Transformer核心技术,直通大模型offer!#AI面试 #深度学习
20 0
|
2天前
|
机器学习/深度学习 人工智能 安全
构建AI智能体:八十六、大模型的指令微调与人类对齐:从知识渊博到善解人意
本文探讨了大模型从知识储备到实用助手的进化过程。首先分析了原始预训练模型存在的问题:擅长文本补全但缺乏指令理解能力,可能生成有害或无关内容。然后详细介绍了指令微调技术,通过高质量(指令-输出)数据集教会模型理解并执行翻译、总结、情感分析等任务。进一步阐述了人类对齐技术,包括基于人类反馈的强化学习(RLHF)的三个关键步骤,使模型输出不仅符合指令,更符合人类价值观。最后展示了Qwen模型微调实践,包括代码实现和效果对比。整个过程将AI从知识库转变为既强大又安全可靠的智能助手。
72 18
|
16天前
|
人工智能 运维 安全
GPT-5.2 Codex来了:能独立跑7+小时的AI程序员,老金手把手教你玩转
OpenAI发布GPT-5.2 Codex,支持异步自主编程,7小时持续任务不断线。采用上下文压缩技术,胜任复杂重构与安全审计。对比Claude Code的同步交互,Codex更像远程员工,适合甩手任务。Plus用户可免费体验,API性价比高,配合本地工具高效开发。
GPT-5.2 Codex来了:能独立跑7+小时的AI程序员,老金手把手教你玩转
|
22天前
|
XML Java 数据库连接
Spring Boot集成MyBatis
MyBatis是Apache顶级持久层框架,简化SQL操作,支持XML与注解映射。本文详解Spring Boot集成MyBatis的两种方式:基于XML和注解,重点讲解注解配置,涵盖依赖引入、yml配置、驼峰命名转换及@MapperScan使用,并结合实战示例,提升开发效率,适用于实际项目应用。(238字)