大模型应用:LlamaIndex 与 LangChain 深度集成构建本地化RAG系统.25
本文详解LlamaIndex与LangChain协同构建本地化RAG系统:以Qwen1.5-1.8B-Chat为基座,通过轻量化验证与工程化落地两阶段示例,实现文档索引、语义检索、提示编排与问答生成全链路本地化,兼顾准确性、可控性与可扩展性。
让 AI 为你打工:只需半小时,用轻量应用服务器部署 24 小时在线的 Moltbot(Clawdbot
阿里云Moltbot(Clawdbot)是一款7×24小时在线AI员工,支持邮件处理、资料整理、文件监控、口语陪练等功能。搭配轻量应用服务器,30分钟即可快速部署,现支持钉钉、QQ、飞书三端接入。
构建AI智能体:七十一、模型评估指南:准确率、精确率、F1分数与ROC/AUC的深度解析
本文系统介绍了机器学习模型评估的核心指标与方法。首先阐述了混淆矩阵的构成(TP/FP/FN/TN),并基于此详细讲解了准确率、精确率、召回率和F1分数的计算原理和适用场景。特别指出准确率在不平衡数据中的局限性,强调精确率(减少误报)和召回率(减少漏报)的权衡关系。然后介绍了ROC曲线和AUC值的解读方法,说明如何通过调整分类阈值来优化模型性能。最后总结了不同业务场景下的指标选择策略:高精度场景侧重精确率,高召回场景关注召回率,平衡场景优选F1分数,不平衡数据则推荐使用AUC评估。
Refly.AI (AI工作流)架构学习指南
Refly.AI 是一个 AI 原生工作流平台,采用 Monorepo + 微服务架构,融合 LangChain、Qdrant、NestJS 与 React 技术栈。本指南系统讲解其项目架构、核心流程与模块依赖,帮助开发者从环境搭建到源码贡献,逐步掌握 AI 工作流设计与开发。
通义千问Qwen荣获“领先科技奖”
2025年11月6日,通义千问大模型荣膺世界互联网大会“领先科技奖”。凭借卓越性能与开源贡献,其已开源超300个模型,下载量超6亿次,衍生模型超17万,居全球首位。
Java原生结合MQTTX,完成心跳对话
简介:本文带你用Java结合MQTT协议与EMQX服务器,在Ubuntu上实现两个程序的“隔空传话”。通过搭建消息代理、编写发送/接收代码,让Java应用实现实时通信,附完整源码与调试技巧,轻松掌握物联网通信核心技能。✨
通义千问 Qwen 系列的 Agent 方向探索
通义千问Qwen系列在AI领域展现了强大的Agent方向探索能力,包括灵活的Tool调用、单/多Agent场景实践等,通过丰富的代码示例展示了其在文本生成、信息检索、任务自动化及专业领域应用等方面的优势,为复杂应用场景提供了多元且实用的解决方案。
介绍大语言模型:langchain
**LangChain框架** 是一个开源工具,由Lang.AI开发,专为基于大语言模型(LLM)的应用程序设计。它简化了与LLM的交互,整合数据检索和功能模块,支持上下文感知和逻辑推理。框架包括**基础层**(Models、LLM、Index)、**能力层**(Chains、Memory、Tools)和**应用层**(Agent),提供模型集成、提示管理、内存系统、索引、链和代理等模块。LangChain的特点包括上下文感知、逻辑推理、预制链和组件,以及开发工具如LangSmith和LangServe。广泛应用在文档分析、聊天机器人、智能助手、代码生成、内容创作和数据科学等领域。
大模型应用:大模型性能评估指标:CLUE任务与数据集详解.10
CLUE(中文语言理解评估基准)是专为中文大模型设计的综合性评测体系,涵盖文本分类、自然语言推理、命名实体识别、阅读理解等任务,提供准确率、F1值、精确匹配等多维指标,并支持模块化评估与可视化分析,助力客观、全面衡量模型真实能力。(239字)
大模型应用:基于本地大模型的中文命名实体识别技术实践与应用
本文探讨了基于本地部署的大模型在命名实体识别(NER)任务中的应用优势。通过通用领域中文NER和医疗领域专用NER两个典型案例,展示了本地大模型在数据安全、响应速度和识别精度方面的显著优势。通用领域采用RoBERTa模型在CLUENER2020数据集上微调,可识别10类实体;医疗领域基于BERT架构的专用模型,在CMEEE数据集上训练,准确识别疾病、症状等医疗实体。本地部署不仅满足合规要求,还能通过领域自适应提升专业文本识别效果,为各行业智能化转型提供可靠技术方案。
AI大模型分词器详解
分词器是将文本转为模型可处理数字序列的关键组件。本文详解BPE、WordPiece、SentencePiece三大主流算法原理与优劣,对比其在多语言支持、分词粒度等方面的差异,并提供中英文实战代码示例,助你掌握词汇表构建流程、特殊标记处理及常见面试问题应对策略。
AI工具选择困难症?Spring AI帮你省掉64%的令牌费用
你的AI助手有50+个工具但每次对话前就烧掉55000个令牌?就像带着全套工具箱去拧个螺丝一样浪费!Spring AI的工具搜索模式让AI按需发现工具,实现34-64%的令牌节省,告别工具选择困难症和账单焦虑。#Spring AI #工具优化 #令牌节省 #AI开发
n8n - 架构学习指南
欢迎来到 n8n 学习之旅!本指南带你深入解析这一强大开源工作流自动化工具的架构设计与技术实现。从项目结构、核心模块到代码质量,结合实战路径与贡献指导,助你由浅入深掌握 n8n,实现从使用者到贡献者的跃迁。
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。
通义灵码正式上线 Qwen3,编程智能体马上来了!
Qwen3正式发布并开源8款「混合推理模型」,包括两款MoE模型(Qwen3-235B-A22B、Qwen3-30B-A3B)和六个Dense模型。旗舰模型Qwen3-235B-A22B在多项测试中表现出色,竞争力强。Qwen3支持两种思考模式(思考与非思考),涵盖119种语言,增强Agent能力,在BFCL评测中创纪录。通义灵码已上线相关插件,助力开发者体验AI编码能力。
【架构模式】解构多智能体协作:AI Agent “指挥官”与“调度官”的双层治理实践
本文提出“指挥官-调度官”双层架构,解决多智能体系统中的意图漂移、死循环与资源竞争问题。通过职能分离,实现高并发、高可用的复杂任务协同。
Trinity-RFT:构建智能体持续学习的自动化强化微调工厂
大型语言模型作为智能体在真实环境中持续交互学习面临诸多挑战。 Trinity-RFT 是通义实验室推出的强化微调框架,旨在实现智能体的持续进化。它通过探索、训练与经验池的解耦设计,支持多样化训练模式,提升资源利用率和学习稳定性。同时,Trinity-RFT 提供灵活的数据处理与算法模块化功能,降低应用与研究门槛,助力迈向终身学习与自主进化的智能体时代。
通义灵码2.5来袭!MCP 功能直接让开发效率提升300%(附实战案例)
通义灵码2.5是阿里云推出的AI编码助手,以智能协作为核心,深度融合开发全流程。其三大升级点包括:编程智能体实现任务自主规划、MCP工具生态支持自然语言生成SQL、记忆进化系统个性化适配开发者习惯。通过自然语言即可完成数据库操作、代码生成与优化,大幅提升开发效率。此外,还具备工程级变更管理、多文件协同编辑及版本控制功能,适用于多种IDE环境,为企业提供安全高效的开发解决方案。
通义大模型:中国AI领域的新里程碑
本文介绍了阿里巴巴达摩院研发的“通义大模型”系列,该模型在2025年已成为AI领域的重要里程碑。通义大模型拥有超大规模参数、多模态融合、高效训练框架和中文优化等技术特点,在智能客服、内容创作、教育和企业服务等多个场景实现应用。未来,它将在多模态能力、小样本学习、安全性及应用场景拓展等方面持续突破,推动中国AI技术进步与行业智能化转型。
2025年大模型发展脉络:深入分析与技术细节
本文深入剖析2025年大模型发展脉络,涵盖裸模型与手工指令工程、向量检索、文本处理与知识图谱构建、自动化提示生成、ReAct多步推理及AI Agent崛起六大模块。从技术细节到未来趋势,结合最新进展探讨核心算法、工具栈与挑战,强调模块化、自动化、多模态等关键方向,同时指出计算资源、数据质量和安全伦理等问题。适合关注大模型前沿动态的技术从业者与研究者。
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
深入剖析 Qwen2.5 - 32B 模型在 VLLM 上的单机三卡部署与运行
本文深入探讨了Qwen2.5 - 32B模型在VLLM框架上的部署过程,从模型下载、启动命令、资源占用分析到GPU资源分配及CUDA图应用,详述了大模型运行的挑战与优化策略,强调了硬件资源规划与技术调优的重要性。
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
建议收藏:大模型模型实战手册,让你的AI从“通才”变成“专才”
本文深入浅出地讲解了如何让大模型真正懂你的业务。针对开源模型“胡说八道”的痛点,系统拆解CPT、SFT、DPO三大微调技术,结合Qwen 2.5、Llama 3等主流模型实战对比,并手把手指导数据准备、环境配置与训练优化,助你用低成本打造专属AI专家,少走半年弯路。
2026年智能体架构综述:从笨重设计到多智能体架构(MAS)
2024是智能体“前哨战”,2026则是生产级智能体的“分水岭”。告别笨重的单体设计,多智能体系统(MAS)正成为主流。通过“路由+执行者”架构与审计机制,实现专业分工、高效协作。AI不再只是工具,而是企业级操作系统,开启智能化协作新纪元。
会议纪要背后的秘密:好的纪要能让会议减少一半
会议开完责任不清、决策模糊?本文分享一个会议纪要AI生成指令,能从混乱的会议讨论中提取决策事项、分配责任人、明确时间节点。支持DeepSeek、通义千问等国产AI,15分钟生成结构完整的专业纪要,把口头约定变成书面契约,让团队协作更透明高效。
周报不是流水账,这个AI指令帮你写出让老板点赞的工作汇报
一个帮助技术人快速生成专业工作周报的AI指令,通过结构化输入和价值导向表达,让你的周报从流水账变成让老板点赞的高质量汇报,15分钟搞定原本需要1小时的周报撰写。
直播带货效率提升300%:这个AI指令让技术人也能写出专业话术
技术人写直播话术太难?逻辑思维 vs 情感营销冲突大,学得慢、改得累。本文分享一套结构化AI指令,将专业带货方法论转化为可执行模板,支持多品类定制,30分钟生成高转化话术,助力开发者高效应对朋友求助或产品推广,轻松玩转直播文案。
30分钟搞定媒体级新闻稿,这个AI提示词让技术人也能玩转公关写作
开发者常因新闻稿写作犯难,本文分享一套AI提示词工具,涵盖角色定义、结构化输入输出、多场景适配与合规检查,助力技术人快速生成符合媒体标准的专业稿件,提升传播效率。
基于通义多模态大模型的实时音视频交互
Qwen-Omni是通义千问系列的全新多模态大模型,支持文本、图像、音频和视频的输入,并输出文本和音频。Omni-Realtime服务针对实时交互场景优化,提供低延迟的人机交互体验。
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
【开源项目】MaxKB4J基于java开发的工作流和 RAG智能体的知识库问答系统
MaxKB4J是一款基于Java开发的开源LLM工作流应用与RAG知识库问答系统,结合MaxKB和FastGPT优势,支持智能客服、企业知识库等场景。它开箱即用,可直接上传/爬取文档,支持多种大模型(如Qwen、通义千问等),具备灵活的工作流编排能力,并无缝嵌入第三方系统。技术栈包括Vue.js、Springboot3、PostgreSQL等,提供稳定高效的智能问答解决方案。访问地址:`http://localhost:8080/ui/login`,项目详情见[Gitee](https://gitee.com/taisan/MaxKB4j)。
AI大模型安全风险和应对方案
AI大模型面临核心安全问题,包括模型内在风险(如欺骗性对齐、不可解释性和模型幻觉)、外部攻击面扩大(如API漏洞、数据泄露和对抗性攻击)及生成内容滥用(如深度伪造和虚假信息)。应对方案涵盖技术防御与优化、全生命周期管理、治理与行业协同及用户教育。未来需关注动态风险适应、跨领域协同和量子安全预研,构建“技术+管理+法律”三位一体的防护体系,推动AI安全发展。
通义智文:文档应用赋能千行百业
通义智文是阿里巴巴推出的大规模文档处理技术体系,旨在提升生产力效率。最初作为阅读工具发布,现已发展为涵盖文档解析、理解、生成等多方面的技术平台。通义智文支持超长文档处理、多模态文本解析,并在法律、教育等领域提供专业服务。其创新算法如VGT版面分析和Layout-LM多模态模型,显著提升了文档处理精度。应用场景包括PPT创作、故事绘本生成及法律文书审查等,赋能千行百业。
智能化AI工具-语言翻译与本地化
在全球化发展的背景下,语言翻译与本地化需求日益增长。无论是跨境电商、国际合作,还是本地化应用开发,都需要高效、准确的翻译解决方案。阿里云通义千问作为一款强大的大语言模型,不仅具备出色的自然语言理解能力,还能够在多语言翻译和本地化场景中发挥重要作用。本博客将详细介绍如何基于阿里云通义千问开发语言翻译与本地化工具,包括产品介绍、程序代码以及阿里云相关产品的具体使用流程。
大模型 Agent 概述
大模型Agent是基于大型预训练模型构建的智能体,具有强大的语言理解和生成能力,能完成多任务处理。其记忆功能包括短期记忆和长期记忆,支持上下文保持、知识积累、计划决策及内容创作,广泛应用于自然语言处理、问答系统、信息检索、辅助决策、教育、创意应用和客服等领域。
Java接入AI大模型:从踩坑到顺滑落地的实战
本文分享Java开发者接入AI大模型的实战经验,从跨语言调用的坑到手动封装HTTP接口的繁琐,最终通过原生Java框架JBoltAI实现高效落地。该框架深度融入Spring生态,支持统一API调用主流大模型,提供高并发、熔断降级等企业级能力,助力Java团队零成本平滑集成AI能力,提升开发与运维效率。
百度下场做GEO?笑死人了
百度所谓“GEO”实为换壳广告营销,打着AI优化旗号,行“付费上榜”之实。本质是用旧套路收割企业焦虑,而真正GEO应是高质量内容与数据驱动的生态建设,而非在枯井里打水。别做AI时代的韭菜。
别再“调教”ChatGPT了!用Qwen2.5打造24小时在线数字分身
在AI时代,专属“数字分身”正从科幻走向现实。依托Qwen2.5-14B大模型、LoRA微调技术及LLaMA-Factory Online平台,仅需四步即可打造会说话、懂风格、能办事的个性化AI助手,让每个人拥有自己的“贾维斯”。
最佳实践2:用通义灵码以自然语言交互实现 AI 高考志愿填报系统
本项目旨在通过自然语言交互,结合通义千问AI模型,构建一个智能高考志愿填报系统。利用Vue3与Python,实现信息采集、AI推荐、专业详情展示及数据存储功能,支持响应式设计与Supabase数据库集成,助力考生精准择校选专业。(239字)
📣通义大模型新成员Qwen-VLo,重磅上线,它实现了从“看懂”世界到“描绘”世界
通义千问团队推出全新多模态统一理解与生成模型Qwen VLo,具备强大的图像理解与生成能力。它不仅能“看懂”图像内容,还能基于理解进行高质量再创造,实现从感知到生成的跨越。支持开放指令编辑、多语言交互及复杂任务处理,适用于图像生成、风格迁移、检测标注等多种场景。
大模型应用:大模型 MapReduce 全解析:核心概念、中文语料示例实现.12
本文对比分析传统Hadoop MapReduce与大模型MapReduce:前者面向结构化数据批处理,依赖CPU/磁盘IO,按数据分片、Shuffle混洗后输出统计结果;后者适配语义任务,基于本地大模型GPU/CPU推理,按语义完整性拆分超长文本,并行处理后语义聚合生成文本结果。
AI Agent 搭建师进阶指南:破解浮光行为陷阱,构建业务闭环价值
本文揭示AI智能体“浮光行为”这一隐性风险:仅机械执行表层指令,缺乏目标理解、状态记忆与自我修正能力。提出AI Agent搭建师三阶成长路径——从工具整合者,到流程架构师,再到行业专家,并给出构建业务闭环、沉淀底层逻辑、实现人机协同的工程破局方法。(239字)
从AI检索原理到geo优化:技术驱动的GEO监测策略
随着AI搜索兴起,信息获取从关键词匹配转向语义理解。本文深入解析GEO(生成式引擎优化)技术原理,对比SEO与GEO的核心差异,揭示RAG、向量化检索的底层逻辑,并介绍如何通过真实用户行为模拟实现精准监测,助力企业构建面向AI时代的内容优化体系。