公众号:matlabworld。从事人工智能,机器学习,机器视觉,图像处理,信号通信等工作,熟悉MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等编程语言
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
本项目展示了一种基于MATLAB 2022a的脉冲编码调制(PCM)算法,用于将模拟信号转换为数字信号。A律压缩是非均匀量化方法之一,适用于语音信号编码,能够提高信噪比和编码效率。核心代码已提供,并附有详细中文注释和操作视频。A律压缩通过调整量化间隔来适应人耳的听觉特性,减少量化噪声,实现高质量的语音通信。此技术广泛应用于电话通信、VoIP和数字音频处理等领域。
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
**摘要 (Markdown格式):** ```markdown - 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ``` - 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。 - 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
使用GoogLeNet深度学习模型在matlab2022a中进行鞋子种类识别,利用Inception模块捕捉多尺度特征,提升分类精度。程序加载预训练模型`gnet.mat`,计算验证集的准确性并随机显示32个样本的预测结果及置信度。
使用MATLAB2022a,结合WOA优化算法调整了CNN-LSTM-Attention模型的超参数。WOA仿照鲸鱼捕食策略解决优化问题,提升时间序列预测准确性。模型先用CNN提取局部特征,接着LSTM处理长期依赖,最后注意力机制聚焦相关历史信息。优化前后效果对比图显示,预测性能显著改善。代码中展示了WOA优化的网络训练及预测过程,并绘制了预测值与真实值的比较图表。
该文介绍了使用优化后的深度学习模型(基于CNN、LSTM和Attention机制)进行时间序列预测,对比了优化前后的效果,显示了性能提升。算法在MATLAB2022a中实现,利用WOA(鲸鱼优化算法)调整模型超参数。模型通过CNN提取局部特征,LSTM处理序列依赖,Attention机制关注相关历史信息。核心程序展示了WOA如何迭代优化及预测过程,包括数据归一化、网络结构分析和预测误差可视化。
该内容是一个关于混沌系统理论及其在图像加解密算法中的应用摘要。介绍了使用matlab2022a运行的算法,重点阐述了混沌系统的特性,如确定性、非线性、初值敏感性等,并以Logistic映射为例展示混沌序列生成。图像加解密流程包括预处理、混沌序列生成、数据混淆和扩散,以及密钥管理。提供了部分核心程序,涉及混沌序列用于图像像素的混淆和扩散过程,通过位操作实现加密。
**算法摘要:** - 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。 - 软件环境:MATLAB 2022a。 - 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。 - 流程概览:两步水印嵌入,每步对应不同图示表示。 - 核心代码未提供。
摘要: 本文介绍了运用粒子群优化(PSO)调整深度学习模型超参数以提升时间序列预测性能的方法。在比较了优化前后的效果(Ttttttttttt12 vs Ttttttttttt34)后,阐述了使用matlab2022a软件的算法。文章详细讨论了CNN、GRU网络和注意力机制在时间序列预测中的作用,以及PSO如何优化这些模型的超参数。核心程序展示了PSO的迭代过程,通过限制和调整粒子的位置(x1)和速度(v1),寻找最佳解决方案(gbest1)。最终,结果保存在R2.mat文件中。
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
该文档介绍了使用MATLAB2022A中PSO优化算法提升时间序列预测模型性能的过程。PSO优化前后对比显示了优化效果。算法基于CNN、LSTM和Attention机制构建CNN-LSTM-Attention模型,利用PSO调整模型超参数。代码示例展示了PSO的迭代优化过程及训练、预测和误差分析环节。最终,模型的预测结果以图形形式展示,并保存了相关数据。
以下是内容的摘要: 该文介绍了使用YOLOv2深度学习模型进行螺丝螺母识别的算法,展示了在matlab2022a环境下运行的6张检测效果图。YOLOv2基于Darknet-19预训练网络,结合多任务损失函数和非极大值抑制技术,有效检测目标。为了适应任务,进行了数据集准备、模型微调、锚框选取等步骤。核心程序加载预训练模型,遍历图像并展示检测结果,通过调整阈值绘制检测框。
该文介绍了使用MATLAB2022A运行的BP神经网络算法,用于城市空气质量预测。算法包括输入层(含多种影响因素如PM2.5、SO2、NO2)、隐藏层和输出层(预测AQI指数)。核心程序涉及数据读取、按月计算均值,以及可视化展示不同空气质量指标随时间的变化。代码处理了2015-2017年数据,分为三个图展示各指标的年际变化。
该文档介绍了在一个FPGA项目中使用HSV色彩模型提取图像深度信息的过程。通过将RGB图像转换为HSV,然后利用明度与深度的非线性映射估计深度。软件版本为Vivado 2019.2和MATLAB 2022a。算法在MATLAB中进行了对比测试,并在FPGA上实现了优化,包括流水线并行处理和查找表技术。提供的Verilog代码段展示了RGB到灰度的转换。实验结果和核心程序的图片未显示。
该内容描述了一个使用CNN-LSTM-Attention模型优化时间序列预测的过程。在优化前后,算法的预测效果有明显提升,软件版本为matlab2022a。理论部分介绍了CNN用于特征提取,LSTM处理序列依赖,Attention关注重要信息,以及遗传算法(GA)优化超参数。提供的核心代码展示了GA的优化迭代和模型训练,以及预测结果的可视化比较。
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于FPGA的二维DCT变换和逆变换verilog实现,包含testbench
基于CNN-LSTM-Attention的时间序列回归预测matlab仿真
基于yolov2深度学习网络的火焰烟雾检测系统matlab仿真
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
基于四叉树的图像分割算法matlab仿真
基于最小二乘正弦拟合算法的信号校正matlab仿真,校正幅度,频率以及时钟误差,输出SNDR,SFDR,ENOB指标
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真
基于EKF扩展卡尔曼滤波的传感器网络目标跟踪matlab仿真
基于FPGA的图像最近邻插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
基于FPGA的图像双边滤波实现,包括tb测试文件和MATLAB辅助验证
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
基于FPGA的9/7整数小波变换和逆变换verilog实现,包含testbench
该内容展示了FPGA实现图像累积直方图的算法。使用Vivado2019.2和matlab2022a,通过FPGA的并行处理能力优化图像处理。算法基于像素值累加分布,计算图像中像素值小于等于特定值的像素个数。核心代码为`test_image`模块,读取二进制图像文件并传递给`im_hist`单元,生成直方图和累积直方图。
基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真
基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
基于yolov2深度学习网络的车辆行人检测算法matlab仿真
基于NIQE算法的图像无参考质量评价算法matlab仿真