基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

简介: 本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。

1.算法运行效果图预览
(完整程序运行后无水印)

pso优化SVM过程:

image.png

识别率对比:

image.png
image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```x = rand(Num,D)/50;
v = rand(Num,D)/50;
%先计算各个粒子的适应度,并初始化Pi和Pg
for i=1:Num
[p(i)] = fitness(x(i,:),P,T);
y(i,:)= x(i,:);
end
%全局最优
pg = x(1,:);

for i=2:Num
[pa(i)] = fitness(x(i,:),P,T);
[pb(i)] = fitness(pg,P,T);

if pa(i) < pb(i)
   pg=x(i,:);
end

end

for t=1:Iters
t
for i=1:Num
v(i,:) = v(i,:)+c1rand(y(i,:)-x(i,:))+c2rand(pg-x(i,:));
x(i,:) = x(i,:)+v(i,:);

    if x(i,1)<0
       x(i,1)=0.01; 
    end
    if x(i,2)<0
       x(i,2)=0.001; 
    end
    [pa(i)] = fitness(x(i,:),P,T);
    if pa(i)<p(i)
       p(i)  = pa(i);
       y(i,:)= x(i,:);
    end
    [pb(i)] = fitness(pg,P,T);
    if p(i)<pb(i)
       pg=y(i,:);
    end
end
Pbest(t)  = mean(pb);
t

end

figure;
plot(Pbest,'b');
legend('加权收敛目标');
grid on

%保存最优参数
for i=1:Num
[pa(i)] = fitness(x(i,:),P,T);
end
[V,I] = min(pa);

C = x(I,1)/5;
gamma = x(I,2)/20;
05_0071m

save para.mat C gamma

```

4.算法理论概述
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模仿了鸟群觅食的行为。支持向量机(Support Vector Machine, SVM)是一种用于分类和回归分析的监督学习方法。将PSO与SVM结合,可以优化SVM中的参数选择问题,从而提高分类精度和泛化能力。

4.1 PSO粒子群优化
粒子群优化算法是由Kennedy和Eberhart在1995年提出的。该算法模拟了鸟类觅食的行为,通过个体之间的协作完成搜索任务。每个“粒子”代表一个潜在解,每个粒子在搜索空间中具有位置和速度两个属性。

4.png

其中,w 是惯性权重,c1 和c2 是加速常数,r1 和r2 是[0,1]区间内的随机数。pbest,i 是粒子i的最佳历史位置,而gbest 是整个群体中的最佳位置。

4.2 svm
SVM的目标是在不同类别之间找到一个最优的超平面,使得两类样本被尽可能远地分开。对于线性可分问题,SVM试图找到一个线性决策边界,即:

5.png

4.3 PSO-SVM
在PSO-SVM中,PSO用于优化SVM的参数,如C(惩罚系数)、γ(核函数中的参数)。具体步骤如下:

初始化PSO种群;
每个粒子代表一组SVM参数;
使用交叉验证的方法评估每组参数下的SVM分类性能;
根据分类性能更新粒子的位置和速度;
迭代直至满足终止条件。
PSO-SVM不仅能够有效解决SVM中参数选择的问题,还能够获得比传统SVM和BP神经网络更高的分类精度和更好的泛化能力。因此,在处理如乳腺癌这样的复杂分类问题时,PSO-SVM提供了一种有效的解决方案。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
3月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
168 73
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
43 2
|
2月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
2月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。