基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');


[V,I] = min(JJ);
g1    = phen1(I,:);



LR             = g1(1);
NN1            = floor(g1(2))+1;

if g1(3)<1/3
   x1=4;
end
if g1(3)>=1/3 & g1(3)<2/3
   x1=5; 
end
if g1(3)>=2/3
   x1=6;
end

if g1(4)<1/3
   x2=3;
end
if g1(4)>=1/3 & g1(4)<2/3
   x2=5; 
end
if g1(4)>=2/3
   x2=7;
end

CNN_GRN_SAM = func_model2(Nfactor,NN1,x1,x2);



%设置
%迭代次数
%学习率为0.001
opt = trainingOptions('adam', ...       
    'MaxEpochs', 20, ...                 
    'InitialLearnRate', LR, ...          
    'LearnRateSchedule', 'piecewise', ...  
    'LearnRateDropFactor', 0.075, ...
    'LearnRateDropPeriod', 200, ...    
    'Shuffle', 'every-epoch', ...          
    'Plots', 'training-progress', ...     
    'Verbose', false);

%训练
[net,INFO] = trainNetwork(Ptrain_reshape, t_train, CNN_GRN_SAM, opt);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%数据预测

tmps   = predict(net, Ptest_reshape );
T_pred = mapminmax('reverse', tmps', vmax2);


figure
plot(T_test, 'r')
hold on
plot(T_pred, 'b-x')
legend('真实值', '预测值')
grid on
%%试集结果
figure
plotregression(T_test,T_pred,['回归']);
ERR=mean(abs(T_test-T_pred));
ERR
save R2.mat Rerr Rlos T_test T_pred ERR Error2
181

4.算法理论概述
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。

网络结构

CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。

卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。

算法流程

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

3.计算适应度值:对于每个个体,将其对应的网络参数代入 CNN-GRU-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

4.更新个体信息,完成选择,交叉,变异三个步骤:并根据新的个体的信息更新公式,更新粒子的信息。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。

6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入 CNN-GRU-SAM 网络中,对测试数据进行预测,得到最终的预测结果。

相关文章
|
1天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
116 85
|
22小时前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
23小时前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
10天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
4天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。