基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证

简介: 这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。

1.算法运行效果图预览
matlab2022a的测试结果如下:

image.png

vivado2019.2的仿真结果如下:

image.png

将数据导入到matlab中,

image.png

系统的RTL结构图如下图所示:

image.png

系统包括中值滤波,RGB转换为ycbcr,人脸检测三个模块

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
肤色模型通常定义在特定的颜色空间中,常见的有RGB、HSV、YCbCr、Lab等。在这些颜色空间中,YCbCr因其能较好地分离亮度(Y)和色度信息(Cb和Cr),常被用于肤色检测。肤色模型可以是简单的阈值方法,也可以是复杂的概率模型,如高斯模型或混合高斯模型。

   对于给定的像素点Cbi,Cri),可以通过计算其在肤色模型下的概率密度值来判断是否属于肤色区域。如果该值超过某一阈值T,则认为该像素属于肤色区域:

image.png

   在肤色检测之前,通常需要对图像进行预处理,如灰度化、去噪、光照补偿等,以减少环境因素的干扰。对于彩色图像,首先将其从RGB空间转换至YCbCr空间:

image.png

   基于肤色模型,肤色分割通常采用阈值法或概率判决法。阈值法直接设定Cb和Cr的阈值范围,如:

image.png

   基于肤色模型的人脸识别技术利用了肤色在色彩空间中的统计特性,通过构建肤色概率模型实现人脸区域的初步定位。尽管这种方法对于复杂背景和光照变化敏感,但通过适当的预处理、后处理及模型优化,可以有效提升识别准确率。

4.部分核心程序

````timescale 1ns / 1ps

module TEST();

reg i_clk;
reg i_rst;
reg [7:0] Isave[0:220000];
integer fids;

integer dat;
integer Pix_begin;
integer Sizes;

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code\test.bmp","rb");
dat = $fread(Isave,fids);
//有效像素起始位置
Pix_begin = {Isave[13], Isave[12], Isave[11], Isave[10]};
//尺寸
Sizes = {Isave[5], Isave[4], Isave[3], Isave[2]};

$fclose(fids);

end

initial
begin
i_clk=1;
i_rst=1;

1000

i_rst=0;
end

always #5 i_clk=~i_clk;

integer jj=0;
reg [7:0]R;
reg [7:0]G;
reg [7:0]B;
always@(posedge i_clk)
begin
R<=Isave[jj+2];//这个datas可以用于输入到FPGA的后期处理
G<=Isave[jj+1];//这个datas可以用于输入到FPGA的后期处理
B<=Isave[jj];//这个datas可以用于输入到FPGA的后期处理
jj<=jj+3;
end

wire [7:0]o_Rmed,o_Gmed,o_Bmed;
wire [7:0]o_Y;// Y
wire [7:0]o_Cr;// Y
wire [7:0]o_Cb;// Y
wire [7:0]o_face_check;

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_R (R),
.i_G (G),
.i_B (B),
.o_Rmed (o_Rmed),
.o_Gmed (o_Gmed),
.o_Bmed (o_Bmed),
.o_Y (o_Y),// Y
.o_Cr (o_Cr),// Y
.o_Cb (o_Cb),// Y
.o_face_check (o_face_check)
);

integer fout1;
initial begin
fout1 = $fopen("face.txt","w");
end

always @ (posedge i_clk)
begin
if(jj<=65536*3+54 & jj>54)
$fwrite(fout1,"%d\n",o_face_check);
else
$fwrite(fout1,"%d\n",0);
end
endmodule

```

相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
1507 8
|
5月前
|
机器学习/深度学习 数据采集 算法
【人脸识别】基于PCA的人脸识别系统(Matlab代码实现)
【人脸识别】基于PCA的人脸识别系统(Matlab代码实现)
423 6
|
5月前
|
测试技术 UED 开发者
性能测试报告-用于项目的性能验证、性能调优、发现性能缺陷等应用场景
性能测试报告用于评估系统性能、稳定性和安全性,涵盖测试环境、方法、指标分析及缺陷优化建议,是保障软件质量与用户体验的关键文档。
|
5月前
|
存储 算法 生物认证
基于Zhang-Suen算法的图像细化处理FPGA实现,包含testbench和matlab验证程序
本项目基于Zhang-Suen算法实现图像细化处理,支持FPGA与MATLAB双平台验证。通过对比,FPGA细化效果与MATLAB一致,可有效减少图像数据量,便于后续识别与矢量化处理。算法适用于字符识别、指纹识别等领域,配套完整仿真代码及操作说明。
|
7月前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
6月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
8月前
|
机器学习/深度学习 编解码 计算机视觉
MATLAB实现人脸识别检测与标出图片中人脸
MATLAB实现人脸识别检测与标出图片中人脸
301 0
|
11月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
11月前
|
Oracle 关系型数据库 MySQL
使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试
这篇文章是作者尚雷关于使用崖山YMP迁移Oracle/MySQL至YashanDB 23.2的验证测试分享。介绍了YMP的产品信息,包括架构、版本支持等,还详细阐述了外置库部署、YMP部署、访问YMP、数据源管理、任务管理(创建任务、迁移配置、离线迁移、校验初始化、一致性校验)及MySQL迁移的全过程。
|
11月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。

热门文章

最新文章