基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN

简介: 该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

```filePath =

'Test_data\悲伤1.wav'

类型:悲伤
识别置信度

Vmax =

0.9559


2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
```Labsn   = [];
% 遍历每种情绪
for i = 1:length(Em_kind)
    Labs0 = Em_kind(i); % 当前情绪标签
    trainfile = dir(['train_data/' char(Labs0), '\*.wav']); % 获取当前情绪的所有 WAV 文件
    Num_wav = length(trainfile(not([trainfile.isdir]))); % 计算有效 WAV 文件的数量

    % 遍历每个 WAV 文件
    for j = 1:Num_wav
        [ywav, Fs] = audioread(['train_data/' char(Labs0) '/' char(lower(Labs0)) int2str(j) '.wav']); % 读取音频文件

        % 计算 MFCC 特征
        [Fmfcc, ~, ~, H] = func_MFCC(ywav, Fs, Lframe, LShift, Fpre, @hamming, [fre_min fre_max], Nch, Cep_coff + 1, Cep_Sine);

        % 将当前文件的 MFCC 特征添加到训练数据集中
        Dat_trainset = [Dat_trainset; Fmfcc'];

        % 将当前文件的标签添加到标签集中
        Labs = [Labs; repmat(cellstr(Labs0), size(Fmfcc, 2), 1)];
        Labsn= [Labsn;repmat(i, size(Fmfcc, 2), 1)];
    end
end

% 训练 KNN 模型
model1 = fitcknn(Dat_trainset, Labs); % 标准化数据并训练 KNN 模型

% 训练多类分类模型
model2 = fitcecoc(Dat_trainset, Labs); % 训练多类分类模型

%GRNN
model3 = newgrnn(Dat_trainset',Labsn',5);



% 保存模型
save model.mat model1 model2 model3; % 将模型保存到文件中
179

4.算法理论概述
语音情绪识别是人工智能和信号处理领域中的一个重要研究方向。它旨在通过分析语音信号中的特征,识别出说话人的情绪状态,如高兴、悲伤、愤怒、恐惧等。随着人工智能技术的不断发展,语音情绪识别在人机交互、心理健康监测、客户服务等领域具有广泛的应用前景。

梅尔频率尺度:

   人耳对声音的感知不是线性的,而是在频率上呈现出一种非线性的关系。梅尔频率尺度是一种基于人耳听觉特性的频率尺度,它将频率转换为梅尔频率,使得人耳对不同频率的声音具有相似的感知。

MFCC 特征提取过程:

预加重:对输入的语音信号进行预加重处理,以增强高频部分的能量。预加重可以通过以下公式实现:,其中为输入的语音信号,为预加重后的信号,为预加重系数,通常取。

分帧:将语音信号分成若干个短时段,称为帧。每一帧的长度通常为 20-40ms,相邻帧之间有一定的重叠。

加窗:对每一帧信号进行加窗处理,以减少帧边界处的不连续性。常用的窗函数有汉明窗、汉宁窗等。

快速傅里叶变换(FFT):对加窗后的每一帧信号进行快速傅里叶变换,得到其频谱。

计算梅尔滤波器组能量:将频谱通过一组梅尔滤波器组,得到每个滤波器的输出能量。梅尔滤波器组是一组在梅尔频率尺度上均匀分布的带通滤波器,其数量通常为 20-40 个。

对数运算:对每个滤波器的输出能量取对数,得到对数梅尔滤波器组能量。

离散余弦变换(DCT):对对数梅尔滤波器组能量进行离散余弦变换,得到 MFCC 系数。DCT 可以将信号从时域转换到频域,同时具有良好的能量压缩性能。

GRNN 广义回归网络原理

GRNN 是一种基于径向基函数(Radial Basis Function,RBF)网络的改进型神经网络。它由输入层、模式层、求和层和输出层组成。

输入层:接收输入向量,其中为输入向量的维度。

模式层:每个神经元对应一个训练样本,其输出为输入向量与训练样本之间的距离的函数。常用的距离函数有欧氏距离、曼哈顿距离等。

求和层:由两个神经元组成,分别计算模式层输出的加权和。一个神经元计算模式层输出的算术和,另一个神经元计算模式层输出的加权和。

输出层:输出为求和层输出的函数,通常为线性函数。
image.png

相关文章
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
6月前
|
机器学习/深度学习 算法 语音技术
基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
**语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)