企业级数据库新型研发模式——数据管理DMS实践
本文整理自数据库专场中阿里云智能技术专家王天振 (为知)的精彩演讲,传统数据库研发模式不仅困难重重,并且效率低下,而基于DMS的企业级数据库新型研发模式却能够做到研发高效,变更稳定和数据安全,本文就为大家介绍阿里巴巴根据自身经验沉淀下来的企业级数据库新型研发模式。
解析大数据基准测试——TPC-H or TPC-DS
随着开源Hapdoop、Map/Reduce、Spark、HDFS、HBASE等技术的商用化,大数据管理技术得到了突飞猛进的发展。一般来说,大数据具有3V特性,即Volume(海量)、Velocity(高速)和Variety(多样)[1]。
实例解析Docker数据卷+数据卷容器+flocker数据共享+DockerHub操作
Docker内部数据管理和Docker之间的数据共享为数据卷和数据卷容器,实例解析1.将本地的文件作为容器的数据卷,2.数据卷flocker插件实现容器集群(或者Docker Swarm)的数据共享3.数据卷容器作为其他容器的数据卷.降低磁盘开销.4.数据的备份,恢复和迁移.5.Docker hub的常用操作.
1.0.数据卷(Data volumes)
Data vol
新加坡:打造成全球数据管理中心
“对于新加坡,数据就是未来流通的货币,而我们目前所做的就是将新加坡打造成全球数据管理中心,从而有能力与企业合作,将数据的潜在价值转化为可见的商业利润。”——吴汭刚 新加坡经济发展局资讯通信与媒体业执行司长
【大数据国家档案】
国名:新加坡
数据开放计划:data.