万字长文 | 多目标跟踪最新综述(基于Transformer/图模型/检测和关联/孪生网络)(下)
随着自动驾驶技术的发展,多目标跟踪已成为计算机视觉领域研究的热点问题之一。MOT 是一项关键的视觉任务,可以解决不同的问题,例如拥挤场景中的遮挡、相似外观、小目标检测困难、ID切换等。为了应对这些挑战,研究人员尝试利用transformer的注意力机制、利用图卷积神经网络获得轨迹的相关性、不同帧中目标与siamese网络的外观相似性,还尝试了基于简单 IOU 匹配的 CNN 网络、运动预测的 LSTM。为了把这些分散的技术综合起来,作者研究了过去三年中的一百多篇论文,试图提取出近年来研究者们更加关注的解决 MOT 问题的技术。
探索未来网络安全的关键:量子加密技术
本文深入探讨了量子加密技术,一项被视为未来网络安全领域的重要突破。通过详细分析量子加密的工作原理、优势以及当前面临的挑战和潜在解决方案,文章为读者提供了对这一前沿技术的全面理解。我们将探讨如何将量子加密技术与现有网络安全架构融合,以及它在未来数字世界中的潜在应用。
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
那些年,人们问王坚博士的33个问题
11月22日,中国工程院公布2019院士增选结果,阿里巴巴技术委员会主席王坚当选院士。回顾过去10年,王坚主持研发了中国唯一自研的云操作系统——飞天,突破世界级技术难题,实现中国云计算从0到1的突破。王坚是如何看待中国技术的?他对于技术创新和布局又有什么样的思考?开发者社区整理了这十年间关于王坚博士的经典采访问答,为你揭晓他作为一名顶尖技术人的思考。