LMDeploy 部署 VLMs 的方法与探讨
LMDeploy 部署 VLMs 的方法与探讨 LMDeploy 是一个高效且友好的大型语言模型(LLMs)和视觉-语言模型(VLMs)部署工具箱,由上海人工智能实验室模型压缩和部署团队开发,涵盖了模型量化、离线推理和在线服务等功能。
ONNX 与量化:提高模型效率
【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。
企业内训|基于华为昇腾910B算力卡的大模型部署和调优-上海某央企智算中心
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
SE 注意力模块 原理分析与代码实现
本文介绍SE注意力模块,它是在SENet中提出的,SENet是ImageNet 2017的冠军模型;SE模块常常被用于CV模型中,能较有效提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。