PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4933内容
机器学习:模型训练术语大扫盲——别再混淆Step、Epoch和Iter等
本文用通俗类比讲清机器学习核心术语:Epoch是完整训练一轮,Batch Size是每次训练的数据量,Step/Iter是每批数据处理及参数更新的最小单位。结合学习率、损失值、过拟合等概念,帮你快速掌握训练过程关键要点,打通术语任督二脉。(238字)
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
1月前
|
从零训练一个 ChatGPT:用 PyTorch 构建自己的 LLM 模型
本文介绍如何使用PyTorch从零构建类似ChatGPT的大型语言模型,涵盖Transformer架构、数据预处理、训练优化及文本生成全过程,助你掌握LLM核心原理与实现技术。(238字)
|
8月前
| |
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
安装PyTorch详细步骤
安装PyTorch时,选择CPU或GPU版本。有Nvidia显卡需装CUDA和cuDNN,可从NVIDIA官网下载CUDA 11.8和对应版本cuDNN。无Nvidia显卡则安装CPU版。安装PyTorch通过conda或pip,GPU版指定`cu118`或`rocm5.4.2`镜像源。验证安装成功使用`torch._version_`和`torch.cuda.is_available()`。
免费试用