118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
扩散模型
本文详细介绍了扩散模型(Diffusion Models, DM),一种在计算机视觉和自然语言处理等领域取得显著进展的生成模型。文章分为四部分:基本原理、处理过程、应用和代码实战。首先,阐述了扩散模型的两个核心过程:前向扩散(加噪)和逆向扩散(去噪)。接着,介绍了训练和生成的具体步骤。最后,展示了模型在图像生成、视频生成和自然语言处理等领域的广泛应用,并提供了一个基于Python和PyTorch的代码示例,帮助读者快速入门。
Python中Thop库的常见用法和代码示例
肆十二在B站分享了关于THOP(Torch-OpCounter)的实战教学视频。THOP是一个用于计算PyTorch模型操作数和计算量的工具,帮助开发者评估模型复杂度和性能。本文介绍了THOP的安装、使用方法及基本用例,包括如何计算模型的FLOPs和参数量。
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。