Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
py-faster-rcnn之python引入_caffe.so
本文并不给出“编写一个c++代码,然后编译为.so文件,然后在python中引入”的hello world,需要的请参考:http://www.oschina.net/question/437227_124449 本文意在强调,python的import,引入的不仅是.
高性能深度学习支持引擎实战——TensorRT
随着传统的高性能计算和新兴的深度学习在百度、京东等大型的互联网企业的普及发展,作为训练和推理载体的GPU也被越来越多的使用。NVDIA本着让大家能更好地利用GPU,使其在做深度学习训练的时候达到更好的效果的目标,推出了支持高性能深度学习支持引擎——TensorRT。
资源!机器学习平台优质资源集合
机器学习平台在人工智能的开发过程中扮演者非常重要的作用,所以,这些年来,也出现了很多不同的机器学习平台,侧重传统方法的scipy、sklearn,侧重深度学习的caffe、theno、pytorch、tensorflow、mxnet,还有高度集成的gluon、keras,都在人工智能工作中扮演者重要的角色,今天我就推荐一些这两年表现比较突出的三个机器学习平台的相关学习资源,分别是tensorflow、pytorch、mxnet。 备注:我已经把tensorflow、pytorch、mxnet官方文档PDF版和epub版放进共享链接,有需要的可以关注微信公众号回复doc获取。
CNN可视化技术总结(四)--可视化工具与项目
前面介绍了可视化的三种方法--特征图可视化,卷积核可视化,类可视化,这三种方法在很多提出新模型或新方法的论文中很常见,其主要作用是提高模型或者新方法的可信度,或者用来增加工作量,或者用来凑字数,还有一些作用是帮助理解模型针对某个具体任务是如何学习,学到了哪些信息,哪些区域对于识别有影响等。 本文将介绍一些可视化的项目,主要有CNN解释器,特征图、卷积核、类可视化的一些代码和项目,结构可视化工具,网络结构手动画图工具。
免费试用