AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1320内容
|
11月前
|
企业内训|基于华为昇腾910B算力卡的大模型部署和调优-上海某央企智算中心
近日上海,TsingtaoAI为某央企智算中心交付华为昇腾910B算力卡的大模型部署和调优课程。课程深入讲解如何在昇腾NPU上高效地训练、调优和部署PyTorch与Transformer模型,并结合实际应用场景,探索如何优化和迁移模型至昇腾NPU平台。课程涵盖从模型预训练、微调、推理与评估,到性能对比、算子适配、模型调优等一系列关键技术,帮助学员深入理解昇腾NPU的优势及其与主流深度学习框架(如PyTorch、Deepspeed、MindSpore)的结合应用。
NPU上运行onnxruntime
在Ascend环境下使用onnxruntime推理时,若安装了GPU版本的onnxruntime(`onnxruntime-gpu`),可能会因缺少CUDA组件报错。正确做法是卸载`onnxruntime-gpu`,并根据官方文档适配NPU,通过源码构建支持CANN的onnxruntime whl包。具体步骤为克隆onnxruntime源码,使用`--use_cann`参数构建,并安装生成的whl包。最后,配置CANNExecutionProvider进行推理。
【AI系统】谷歌 TPU v4 与光路交换
TPU v4 是谷歌在 TPU v3 发布四年后推出的最新一代 AI 加速器,采用了 7nm 工艺,MXU 数量翻倍,内存容量和带宽显著提升。TPU v4 引入了 Sparse Core 以优化稀疏计算,首次采用了 3D Torus 互联方式,通过 Palomar 光路开关芯片减少系统延迟和功耗。TPU v4 Pod 实现了 1.126 Exaflops 的 BF16 峰值算力,展现了谷歌在大规模并行计算领域的突破。然而,TPU v4 也面临着系统成熟度低、拓扑僵硬和负载均衡问题等挑战。
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
|
6月前
|
大模型推理显存和计算量估计方法
最近做吞吐量调试涉及到输入batch_size的设置,为了把算力和显存用起来,同时不触发out of memory,需要提前估计大模型推理过程中的显存占用
免费试用