边缘计算

首页 标签 边缘计算
# 边缘计算 #
关注
2900内容
为何人们喜欢推理胜于训练大模型?
在AI和机器学习领域,越来越多的人转向重视推理而非大规模模型训练。推理的即时性和高效性使其在需要快速响应的场景中占优,如自然语言处理和图像识别。推理过程的可视化能帮助用户理解模型决策,便于调试和提升性能。此外,推理在边缘计算和移动设备上的应用降低了延迟和带宽成本,同时保护了用户隐私。相比于训练大模型的高资源消耗,推理更为节能且成本效益高,尤其在数据挖掘和新知识探索方面展现出创新潜力。推理在实际应用中与训练模型相结合,提供了性能与成本的有效平衡。随着技术进步,推理将在推动人工智能领域发展中发挥更大作用。
|
9月前
| |
来自: 物联网
FreeMQTT Plus: 一个新型 MQTT Broker 集群的实现
FreeMQTT Plus 是一款基于 MQTT 协议的高性能消息中间件,采用分布式架构解决单点瓶颈问题。其核心由 Nginx 负载均衡器、黑(A)节点(MQTT Broker)、白(B)节点(消息路由)和日志(L)节点组成。通过无主从设计,支持高可用性、负载均衡与灵活扩展。针对会话同步、消息路由等挑战,FreeMQTT Plus 利用 MQTT5 特性定义元命令,实现节点间高效通信,无需依赖第三方组件。适用于物联网海量设备接入与高并发场景,为未来边缘计算和多级集群部署提供坚实基础。
智能宠物设备端侧AI技术深度解析:从模型压缩到实时响应
随着宠物经济兴起,智能设备迎来发展机遇。本文聚焦端侧AI在宠物识别中的应用,探讨模型压缩、硬件适配与性能优化技术,解决识别不准、响应慢等痛点,助力开发者打造高效、低功耗的智能宠物产品,实现毫秒级精准识别。
k8s+kubeedge+sedna安装全套流程+避坑指南+解决办法
最近在学习边缘计算要用到kubeedge,安装了好多次总会遇到各种各样的问题,因此在这里一一列出,以方便下次安装。则里面可能出错的地方太多,如果有问题,请私信联系。
免费试用