纯视觉3D检测综述!一文详解3D检测现状、趋势和未来方向!(上)
基于图像的3D目标检测是自动驾驶领域的一个基本问题,也是一个具有挑战性的问题,近年来受到了业界和学术界越来越多的关注。得益于深度学习技术的快速发展,基于图像的3D检测取得了显著的进展。特别是,从2015年到2021年,已经有超过200篇研究这个问题的著作,涵盖了广泛的理论、算法和应用。然而,到目前为止,还没有一个调查来收集和组织这方面的知识。本文首次对这一新兴的不断发展的研究领域进行了全面综述,总结了基于图像的3D检测最常用的流程,并对其各个组成部分进行了深入分析。此外,作者还提出了两个新的分类法,将最先进的方法组织成不同的类别,以期提供更多的现有方法的系统综述,并促进与未来作品的公平比较。在
转置卷积-清晰易懂
转置卷积(Transpose Convolution)是一种用于图像上采样的技术,常用于图像分割、生成对抗网络(GAN)等领域。与传统的上采样方法不同,转置卷积通过学习参数来实现更优的插值效果。本文介绍了转置卷积的背景、应用、与标准卷积的区别以及数学推导,帮助读者深入理解其原理和应用场景。