光伏储能数据管理新突破:新能源行业研讨会精华解析
在沪举办的TDengine新能源行业研讨会聚焦数据管理在新能源领域的应用。涛思数据创始人分享了TDengine作为高性能时序数据库在物联网和工业大数据处理中的优势,强调其在全球已拥有近56万用户实例。演讲嘉宾展示了TDengine如何助力企业解决数据处理困境,提高运营效率,例如在协鑫能源项目中实现数据查询速度提升和高效历史数据管理。通过圆桌讨论,与会者探讨了技术、政策和市场对新能源可持续发展的影响,期待更多创新合作。
PolarDB产品使用问题之如何进行版本回退
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
优化基于阿里云的微服务架构下的数据库访问性能
在应对大型电商项目中数据库访问性能瓶颈问题时,团队通过阿里云工具分析发现高QPS、慢查询和不合理数据交互是关键。优化措施包括:1) 索引优化,针对慢查询添加或调整索引;2) 开启读写分离,使用RDS读写分离功能和DRDS进行水平拆分;3) 引入Redis缓存热点数据,减少直接数据库访问;4) 服务化数据访问,降低跨服务数据库调用;5) 使用Sentinel进行限流和熔断,保护数据库资源。这些改进显著提升了系统响应速度和用户体验。
数据治理:在保护与利用数据资产间寻求平衡
【6月更文挑战第23天】数据治理在平衡数据资产保护与利用中发挥关键作用。它确保合规性、控制风险、支持决策并创造价值。核心在于保护数据安全与有效利用。企业需建立数据管理制度,明确所有权,加强安全措施,同时推动数据创新。通过设定目标、完善制度、安全管理和共享,以及持续优化,企业在保护与利用间找到最佳实践。
“湖仓一体架构及其应用”写作框架,系统架构设计师
随着5G、大数据、人工智能、物联网等技术的不断成熟,各行各业的业务场景日益复杂,企业数据呈现出大规模、多样性的特点,特别是非结构化数据呈现出爆发式增长趋势。在这一背景下,企业数据管理不再局限于传统的结构化OLTP(On-Line Transaction Processing)数据交易过程,而是提出了多样化、异质性数据的实时处理要求。传统的数据湖(Data Lake)在事务一致性及实时处理方面有所欠缺,而数据仓库(Data Warehouse)也无法应对高并发、多数据类型的处理。因此,支持事务一致性、提供高并发实时处理及分析能力的湖仓一体(Lake House)架构应运而生。湖仓一体架构在成本、