【AI系统】图算 IR
本文全面介绍了计算图的概念及其在AI框架中的应用,涵盖计算图的基本构成、与自动微分的关系、静态图与动态图的生成及特点,以及计算图对AI编译器的重要作用。文章详细解析了计算图的结构,包括张量和算子的角色,探讨了AI框架如何通过计算图实现自动微分,同时对比了静态图和动态图的优缺点,指出了计算图在优化AI编译器性能方面的关键作用。
【AI系统】AI编译器前瞻
本文基于《The Deep Learning Compiler: A Comprehensive Survey》调研,对比了TVM、nGraph、TC、Glow和XLA五个热门AI编译器,介绍了它们的特点和应用场景。文章分析了AI编译器面临的挑战,包括动态Shape问题、Python编译静态化、发挥硬件性能、特殊优化方法及易用性与性能兼顾问题,并展望了AI编译器的未来,探讨了编译器形态、IR形态、自动并行、自动微分及Kernel 自动生成等方面的发展趋势。
【AI系统】AI 编译器历史阶段
本文概述了AI编译器的发展历程,从朴素AI编译器、专用AI编译器到未来的通用AI编译器,详细介绍了各阶段的技术特点与优化目标。AI编译器旨在优化AI和机器学习应用,通过多层IR设计、面向神经网络的深度优化及对DSA芯片的支持,实现高性能计算。随着技术的进步,通用AI编译器将实现计算图与算子的统一表达、自动化优化及模块化设计,推动AI技术的广泛应用和发展。
【AI系统】AI 编译器基本架构
本文承接前文关于AI编译器发展的三个阶段,深入探讨通用AI编译器架构。文章首先回顾现有AI编译器架构,如PyTorch的转换流程及优化策略,然后介绍理想化的通用AI编译器架构,涵盖从前端接收多框架模型输入到后端生成特定硬件代码的全过程。重点解析了编译器的中间表达IR、前端与后端优化技术,以及现有AI编译器全栈产品的层次结构,为读者提供了全面的技术概览。
【AI系统】为什么需要 AI 编译器
本文探讨了AI编译器的黄金年代及其必要性,通过对比传统编译器与AI编译器的区别,揭示了AI编译器在处理复杂神经网络模型时的优化能力和对异构计算平台的支持。随着AI硬件的多样化和软件碎片化问题的加剧,AI编译器成为连接上层应用与底层硬件的关键桥梁,旨在提高性能、降低成本并增强软件的可移植性。
【AI系统】LLVM 后端代码生成
本文介绍 LLVM 后端的代码生成过程,包括将优化后的 LLVM IR 转换为目标代码的关键步骤,如指令选择、寄存器分配、指令调度等,以及后端如何支持不同硬件平台的代码生成。
【AI系统】LLVM 前端和优化层
本文介绍了 LLVM 编译器的核心概念——LLVM IR,并详细讲解了 LLVM 的前端 Clang 如何将 C、C++ 等高级语言代码转换为 LLVM IR。文章还探讨了编译过程中的词法分析、语法分析和语义分析三个关键步骤,以及 LLVM 优化层的 Pass 机制,包括分析 Pass 和转换 Pass 的作用及依赖关系。
【AI系统】LLVM IR 详解
本文深入探讨了LLVM IR(中间表示)的概念,解释了其在编译器中的重要性和作用。LLVM IR作为一种抽象程度适中的中间语言,不仅涵盖了源代码的大部分信息,还支持编译器进行灵活的代码优化。文章进一步解析了LLVM IR的三地址码表示及其优点,并通过具体示例展示了LLVM IR的设计原则和内存模型,帮助读者更好地理解编译器内部的工作机制。
【C语言】auto 关键字详解
`auto` 关键字用于声明局部变量的自动存储类,其作用主要体现在变量的生命周期上。尽管现代C语言中 `auto` 的使用较少,理解其历史背景和作用对于掌握C语言的存储类及变量管理仍然很重要。局部变量默认即为 `auto` 类型,因此在实际编程中,通常不需要显式声明 `auto`。了解 `auto` 关键字有助于更好地理解C语言的存储类及其在不同场景中的应用。
【C语言】enum 关键字详解
`enum`关键字在C语言中提供了一种简洁而高效的方法来定义一组相关的常量。通过使用枚举,可以提高代码的可读性、可维护性,并减少错误的发生。在实际应用中,枚举广泛用于表示状态、命令、错误码等,为开发者提供了更清晰的代码结构和更方便的调试手段。通过合理使用枚举,可以编写出更高质量、更易维护的C语言程序。