搜索推荐

首页 标签 搜索推荐
# 搜索推荐 #
关注
32664内容
特别加餐 | 倒排检索加速(一):工业界如何利用跳表、哈希表、位图进行加速?
本文深入解析工业界如何利用跳表、哈希表和位图加速倒排索引的交集运算。通过跳表实现快速跳跃查找,哈希表提升小集合匹配效率,位图及Roaring Bitmap优化存储与计算,结合实际场景分析各类技术的适用条件与性能权衡,揭示搜索引擎背后的高效检索原理。(238字)
2025年中国数字人企业排名与新动能及新生态
AI数字人正重塑人机交互:融合视觉、语言与多模态技术,实现真实表情、自然对话与场景化应用。从“炫技”到“实用”,数字人迈向系统化、合规化发展,成为连接数字世界与人类社会的新桥梁。
特别加餐丨倒排检索加速(二):如何对联合查询进行加速?
本文深入探讨联合查询的加速方法,针对倒排索引中复杂查询场景,系统介绍四种工业级优化技术:调整次序法通过优化求交/并集顺序降低计算代价;快速多路归并法利用跳表提升多列表合并效率;预先组合法提前计算高频查询结果;缓存法则借助LRU机制动态存储热点组合,显著提升检索性能。
状态检索:如何快速判断一个用户是否存在?
本文探讨如何高效判断用户是否存在,对比有序数组、二分查找树和哈希表后,引出更优方案:位图与布隆过滤器。位图以bit为单位存储,大幅节省空间;布隆过滤器通过多哈希函数降低冲突概率,虽有一定误判率,但查询效率达O(1),适用于注册去重、爬虫去重等场景,是提升系统性能的关键技术。
冒泡排序与其它排序算法比较
冒泡、选择、插入排序时间复杂度均为O(n²)。冒泡稳定,可优化至O(n),交换频繁;选择不稳定,交换次数少;插入稳定,对有序数组高效,三者中交换最少。相较其他高级排序无时间优势。
重复性工作中如何培养匠心
本文探讨在互联网低增长周期下,工程师如何在重复性工作中培养匠心。通过分析“结果价值空间、过程贡献度、可预测性”三个指标,指出即便工作看似重复,仍可通过创新、沉淀与自我突破挖掘成长空间,实现从熟练到卓越的跃迁。
20 | 推荐引擎:没有搜索词,「头条」怎么找到你感兴趣的文章?
每天下拉刷新,资讯App就能推荐你感兴趣的头条,这背后依赖的是推荐引擎的检索技术。与搜索不同,推荐系统通过用户行为构建画像,结合内容标签与协同过滤算法,实现个性化召回。基于内容的推荐匹配兴趣,协同过滤则挖掘用户或物品相似性,再经多层排序筛选出最优结果。混合策略让推荐更精准高效。
特别加餐丨倒排检索加速(二):如何对联合查询进行加速?
本文深入探讨工业界倒排索引中联合查询的四大加速方法:调整次序法通过优化计算顺序提升效率;快速多路归并法利用跳表加速多集合交集运算;预先组合法对高频查询提前计算结果;缓存法则通过LRU机制缓存热点查询,减少重复计算。四种方法从数学、算法与工程角度协同优化复杂检索,显著提升系统性能。
11|精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序核心在于打分与Top K检索。本文详解三种打分算法:经典TF-IDF衡量词频与区分度;BM25在此基础上引入文档长度、词频饱和等优化,支持参数调节;机器学习则融合上百因子自动学习权重,提升排序精度。最后通过堆排序高效实现Top K结果返回,兼顾性能与效果。适合搜索、推荐等场景。
08 | 索引构建:搜索引擎如何为万亿级别网站生成索引?
针对超大规模数据,如搜索引擎需处理万亿级网页,倒排索引远超内存容量。为此,工业界采用分治与多路归并思想:先将文档集拆分为小块,在内存中为每块构建倒排索引并写入磁盘临时文件;随后通过多路归并合并临时文件,生成全局有序的最终倒排文件。该过程类似MapReduce框架,支持分布式加速。检索时,优先将词典加载至内存,用哈希表或B+树快速定位关键词,再从磁盘读取对应posting list。对过长的posting list,则采用分层索引(如跳表)或缓存机制(如LRU),仅加载必要数据块,减少IO开销,提升效率。
免费试用