状态检索:如何快速判断一个用户是否存在?

简介: 本文探讨如何高效判断用户是否存在,对比有序数组、二分查找树和哈希表后,引出更优方案:位图与布隆过滤器。位图以bit为单位存储,大幅节省空间;布隆过滤器通过多哈希函数降低冲突概率,虽有一定误判率,但查询效率达O(1),适用于注册去重、爬虫去重等场景,是提升系统性能的关键技术。

4 | 状态检索:如何快速判断一个用户是否存在?
在实际工作中,我们经常需要判断一个对象是否存在。比如说,在注册新用户时,我们需要先快速判断这个用户 ID 是否被注册过;再比如说,在爬虫系统抓取网页之前,我们要判断一个 URL 是否已经被抓取过,从而避免无谓的、重复的抓取工作。
那么,对于这一类是否存在的状态检索需求,如果直接使用我们之前学习过的检索技术,有序数组、二叉检索树以及哈希表来实现的话,它们的检索性能如何呢?是否还有优化的方案呢?今天,我们就一起来讨论一下这些问题。
如何使用数组的随机访问特性提高查询效率?
以注册新用户时查询用户 ID 是否存在为例,我们可以直接使用有序数组、二叉检索树或者哈希表来存储所有的用户 ID。
我们知道,无论是有序数组还是二叉检索树,它们都是使用二分查找的思想从中间元素开始查起的。所以,在查询用户 ID 是否存在时,它们的平均检索时间代价都是 O(log n),而哈希表的平均检索时间代价是 O(1)。因此,如果我们希望能快速查询出元素是否存在,那哈希表无疑是最合适的选择。不过,如果从工程实现的角度来看的话,哈希表的查询过程还是可以优化的。
比如说,如果我们要查询的对象 ID 本身是正整数类型,而且 ID 范围有上限的话。我们就可以申请一个足够大的数组,让数组的长度超过 ID 的上限。然后,把数组中所有位置的值都初始化为 0。对于存在的用户,我们 直接将用户 ID 的值作为数组下标,将该位置的值从 0 设为 1 就可以了。
这种情况下,当我们查询一个用户 ID 是否存在时,会直接以该 ID 为数组下标去访问数组,如果该位置为 1,说明该 ID 存在;如果为 0,就说明该 ID 不存在。和哈希表的查找流程相比,这个流程就节省了计算哈希值得到数组下标的环节,并且直接利用数组随机访问的特性,在 O(1) 的时间内就能判断出元素是否存在,查询效率是最高的。
但是,直接使用 ID 作为数组下标会有一个问题:如果 ID 的范围比较广,比如说在 10 万之内,那我们就需要保证数组的长度大于 10 万。所以,这种方案的占用空间会很大。
而且,如果这个数组是一个 int 32 类型的整型数组,那么每个元素就会占据 4 个字节,用 4 个字节来存储 0 和 1 会是一个巨大的空间浪费。那我们该如何优化呢?你可以先想一想,然后我们一起来讨论。
如何使用位图来减少存储空间?
最直观的一个想法就是,使用最少字节的类型来定义数组。比如说,使用 1 个字节的 char 类型数组,或者使用 bool 类型的数组(在许多系统中,一个 bool 类型的元素也是 1 个字节)。它们和 4 个字节的 int 32 数组相比,空间使用效率提升了 4 倍,这已经算是不错的改善了。
但是,使用 char 类型的数组,依然是一个非常「浪费空间」的方案。因为表示 0 或者 1,理论上只需要一个 bit。所以,如果我们能以 bit 为单位来构建这个数组,那使用空间就是 int 32 数组的 1/32,从而大幅减少了存储使用的内存空间。这种以 bit 为单位构建数组的方案,就叫作 Bitmap,翻译为 位图。
位图的优势非常明显,但许多系统中并没有以 bit 为单位的数据类型。因此,我们往往需要对其他类型的数组进行一些转换设计,使其能对相应的 bit 位的位置进行访问,从而实现位图。
我们以 char 类型的数组为例子。假设我们申请了一个 1000 个元素的 char 类型数组,每个 char 元素有 8 个 bit,如果一个 bit 表示一个用户,那么 1000 个元素的 char 类型数组就能表示 81000 = 8000 个用户。如果一个用户的 ID 是 11,那么位图中的第 11 个 bit 就表示这个用户是否存在的信息。
这种情况下,我们怎么才能快速访问到第 11 个 bit 呢?
首先,数组是以 char 类型的元素为一个单位的,因此,我们的第一步,就是要找到第 11 个 bit 在数组的第几个元素里。具体的计算过程:一个元素占 8 个 bit,我们用 11 除以 8,得到的结果是 1,余数是 3。这就代表着,第 11 个 bit 存在于第 2 个元素里,并且在第 2 个元素里的位置是第 3 个。
对于第 2 个元素的访问,我们直接使用数组下标[1]就可以在 O(1) 的时间内访问到。对于第 2 个元素中的第 3 个 bit 的访问,我们可以通过位运算,先构造一个二进制为 00100000 的字节(字节的第 3 位为 1),然后和第 2 个元素做 and 运算,就能得知该元素的第 3 位是 1 还是 0。这也是一个时间代价为 O(1) 的操作。这样一来,通过两次 O(1) 时间代价的查找,我们就可以知道第 11 个 bit 的值是 0 还是 1 了。
用户 ID 为 11 的位图定位
尽管位图相对于原始数组来说,在元素存储上已经有了很大的优化,但如果我们还想进一步优化存储空间,是否还有其他的优化方案呢?我们知道,一个数组所占的空间其实就是「数组元素个数
每个元素大小」。我们已经将每个元素大小压缩到了最小单位 1 个 bit,如果还要进行优化,那么自然会想到优化「数组元素个数」。
没错,限制数组的长度是一个可行的方案。不过前面我们也说了,数组长度必须大于 ID 的上限。因此,如果我们希望将数组长度压缩到一个足够小的值之内,我们就需要使用哈希函数将大于数组长度的用户 ID,转换为一个小于数组长度的数值作为下标。除此以外,使用哈希函数也带来了另一个优点,那就是我们不需要把用户 ID 限制为正整数了,它也可以是字符串。这样一来,压缩数组长度,并使用哈希函数,就是一个更加通用的解决方案。
但是我们也知道,数组压缩得越小,发生哈希冲突的可能性就会越大,如果两个元素 A 和 B 的哈希值冲突了,映射到了同一个位置。那么,如果我们查询 A 时,该位置的结果为 1,其实并不能说明元素 A 一定存在。因此,如何在数组压缩的情况下缓解哈希冲突,保证一定的查询正确率,是我们面临的主要问题。
在第 3 讲中,我们讲了哈希表解决哈希冲突的两种常用方法:开放寻址法和链表法。开放寻址法中有一个优化方案叫「双散列」,它的原理是使用多个哈希函数来解决冲突问题。我们能否借鉴这个思想,在位图的场景下使用多个哈希函数来降低冲突概率呢?没错,这其实就是布隆过滤器(Bloom Filter)的设计思想。
布隆过滤器最大的特点,就是对一个对象使用多个哈希函数。如果我们使用了 k 个哈希函数,就会得到 k 个哈希值,也就是 k 个下标,我们会把数组中对应下标位置的值都置为 1。布隆过滤器和位图最大的区别就在于,我们不再使用一位来表示一个对象,而是使用 k 位来表示一个对象。这样两个对象的 k 位都相同的概率就会大大降低,从而能够解决哈希冲突的问题了。
Bloom filter 示例
但是,布隆过滤器的查询有一个特点,就是即使任何两个元素的哈希值不冲突,而且我们查询对象的 k 个位置的值都是 1,查询结果为存在,这个结果也可能是错误的。这就叫作 布隆过滤器的错误率。
我在下图给出了一个例子。我们可以看到,布隆过滤器中存储了 x 和 y 两个对象,它们对应的 bit 位被置为 1。当我们查询一个不存在的对象 z 时,如果 z 的 k 个哈希值的对应位置的值正好都是 1,z 就会被错误地认定为存在。而且,这个时候,z 和 x,以及 z 和 y,两两之间也并没有发生哈希冲突。
那遇到「可能存在」这样的情况,我们该怎么办呢?不要忘了我们的使用场景:我们希望用更小的代价快速判断 ID 是否已经被注册了。在这个使用场景中,就算我们无法确认 ID 是否已经被注册了,让用户再换一个 ID 注册,这也不会损害新用户的体验。在系统不要求结果 100% 准确的情况下,我们可以直接当作这个用户 ID 已经被注册了就可以了。这样,我们使用布隆过滤器就可以快速完成「是否存在」的检索。
除此之外,对于布隆过滤器而言,如果哈希函数的个数不合理,比如哈希函数特别多,布隆过滤器的错误率就会变大。因此,除了使用多个哈希函数避免哈希冲突以外,我们还要控制布隆过滤器中哈希函数的个数。有这样一个 计算最优哈希函数个数的数学公式: 哈希函数个数 k = (m/n) * ln(2)。其中 m 为 bit 数组长度,n 为要存入的对象的个数。实际上,如果哈希函数个数为 1,且数组长度足够,布隆过滤器就可以退化成一个位图。所以,我们可以认为 位图是只有一个特殊的哈希函数,且没有被压缩长度的布隆过滤器。
重点回顾
好了,状态检索的内容我们就讲到这里。我们一起来总结一下,这一讲你要掌握的重点内容。
今天,我们主要解决了快速判断一个对象是否存在的问题。相比于有序数组、二叉检索树和哈希表这三种方案,位图和布隆过滤器其实更适合解决这类状态检索的问题。这是因为,在不要求 100% 判断正确的情况下,使用位图和布隆过滤器可以达到 O(1) 时间代价的检索效率,同时空间使用率也非常高效。
虽然位图和布隆过滤器的原理和实现都非常简单,但是在许多复杂的大型系统中都可以见到它们的身影。
比如,存储系统中的数据是存储在磁盘中的,而磁盘中的检索效率非常低,因此,我们往往会先使用内存中的布隆过滤器来快速判断数据是否存在,不存在就直接返回,只有可能存在才会去磁盘检索,这样就避免了为无效数据读取磁盘的额外开销。
再比如,在搜索引擎中,我们也需要使用布隆过滤器快速判断网站是否已经被抓取过,如果一定不存在,我们就直接去抓取;如果可能存在,那我们可以根据需要,直接放弃抓取或者再次确认是否需要抓取。你会发现,这种快速预判断的思想,也是提高应用整体检索性能的一种常见设计思路。

相关文章
|
1天前
|
存储 算法 Java
链表(链式存储)基本原理
链表是一种通过指针串联节点的线性结构,无需连续内存,支持高效增删。单链表仅有next指针,双链表增加prev指针以支持双向遍历。相比数组,链表插入删除灵活,无扩容负担,但不支持随机访问,查找需从头遍历。实际开发中常用双链表,配合虚拟头结点简化操作。
|
11天前
|
数据采集 SQL 自然语言处理
脏数据不脏心:大数据平台的数据质量(DQ)入门实战与自动修复心法
脏数据不脏心:大数据平台的数据质量(DQ)入门实战与自动修复心法
111 20
|
9天前
|
人工智能 运维 安全
SOC 2.0 来了:不是加人加班,而是加“智能”!——智能化安全运营中心的建设之道
SOC 2.0 来了:不是加人加班,而是加“智能”!——智能化安全运营中心的建设之道
116 15
|
5天前
|
人工智能 算法 搜索推荐
Geo优化“两大核心+四轮驱动”的深度解读与实践要点
本文将深度解读“两大核心+四轮驱动”Geo优化方式的优化要点,旨在为内容创作者和企业营销人员提供一套专业、可信、有深度的实践指南。
108 6
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI时代的新引擎:Geo专家于磊老师深度解析Geo优化中的技术要点
在AI时代,传统SEO正被Geo优化(GEO)重塑。于磊老师提出“人性化Geo”理念,强调E-E-A-T、结构化数据与语义适配,助力企业提升AI引用率,实现获客提效,引领数字营销新变革。
354 159
AI时代的新引擎:Geo专家于磊老师深度解析Geo优化中的技术要点
|
2天前
|
人工智能 运维 自然语言处理
2025年开源AI知识库深度体验:PandaWiki重新定义企业知识管理
2025年末了,作为一名AI的资深使用者我对PandaWiki有一点使用体会想分享下,写的不好请见谅。
|
5天前
|
人工智能 自然语言处理 JavaScript
别卷低代码了!VTJ.PRO 把 AI 引擎开源,才是 “降本增效” 的终极答案
VTJ AI集成将自然语言、设计稿及结构化数据高效转为Vue代码,采用分层架构确保可扩展性与稳定性,支持多模态输入、实时流响应与严格代码验证,提升前端开发效率。
71 13
|
4天前
|
搜索推荐
掌握三大核心技巧,快速成为1688运营高手!
1688运营需聚焦三大核心:提升店铺综合权重、优化搜索相关性、挖掘流量价值。通过商品、转化、服务等多维度协同,精准匹配关键词与类目,强化客户体验与复购,系统提升L等级与动销表现,实现曝光、转化双增长。每月复盘,稳步推进,打造高竞争力店铺。
|
5天前
|
人工智能 供应链 监控
站在岔路口的1688商家,是观望,还是在新赛道中寻找机会?
1688商家正面临流量下滑的严峻挑战,平台转型、算法升级与外部竞争加剧使传统运营模式难以为继。面对困境,主动求变才是出路:通过内容化转型、直播短视频、数据驱动和私域沉淀等新策略,提升数字化能力与客户价值。唯有创新升级,才能穿越周期,赢得未来。
|
5天前
|
存储 人工智能 算法
构建AI智能体:四十七、Agent2Agent多智能体系统:基础通信与任务协作实现
摘要:Agent2Agent(A2A)是一个促进多智能体间通信与协作的框架,通过标准化协议实现复杂问题求解。智能体具备自主性、社交能力等特征,分为反应型、慎思型等类型。框架提供四种协作模式和多种冲突解决机制,采用消息传递方式进行通信,包含传输层、任务分配器等组件。演示案例展示了任务管理器与工作者智能体之间的任务分配与执行流程,包括问候交互、任务创建、结果反馈等环节。该框架适用于分布式系统管理、多模态AI协作等场景,为构建智能自治系统提供基础支持。示例代码实现了智能体注册、消息传递和任务处理的核心功能。
215 8