机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
70237内容
|
2天前
|
《揭秘AI与元应用:优化模型训练,解锁无限潜能》
在数字化浪潮中,AI与元应用开发正以前所未有的速度重塑生活与工作方式。优化AI模型的训练效率与准确性是关键,涵盖五个方面:精选适配模型架构(如CNN、RNN、Transformer),雕琢数据质量(清洗、增强、归一化),优化训练算法(如SGD、Adam),借助硬件加速(GPU、TPU、FPGA),以及模型压缩与优化(量化、剪枝、知识蒸馏)。这些环节共同提升AI模型性能,推动元应用发展,创造更多创新体验。
|
2天前
| |
LLM模型添加自定义Token代码示例:为Llama 3.2模型添加思考与回答标记
本文将介绍如何为大型语言模型(LLM)添加自定义token并进行训练,使模型能够有效地利用这些新增token。以Llama 3.2模型为基础,实现了类似DeepSeek R1中think和answer标记功能的扩展方法,通过监督微调使模型学习使用这些标记进行推理过程与答案输出的区分
为什么要用TorchEasyRec processor?
TorchEasyRec处理器支持Intel和AMD的CPU服务器及GPU推理,兼容普通PyTorch模型。它具备TorchEasyRec的特征工程(FG)和模型推理功能,提供更快的推理性能,降低成本。通过Item Feature Cache特性,它能够缓存特征以减少网络传输,进一步提升特征工程与推理的速度。
免费试用