Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性
Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。
Nginx Ingress 退役,详细版迁移指引来啦
Ingress NGINX 退役引发开发者们的强烈关注,官方已经提供了完备的应对措施,迁移到 Gateway API,以及20+ Ingress 控制器。但实施迁移的时候,企业还会希望了解新的 Ingress 控制器是否兼容 Ingress NGINX 的注解,迁移过程中如何进行灰度切流,遇到流量损失如何快速回滚等,以保障迁移过程平滑,不影响线上业务。因此,本文将提供基于实操的应对方案,以阿里云云原生 API 网关(Higress 企业版)为例,按步骤详细阐述迁移的操作过程。
嘉银科技基于阿里云 Kafka Serverless 提升业务弹性能力,节省成本超过 20%
云消息队列 Kafka 版 Serverless 系列凭借其秒级弹性扩展、按需付费、轻运维的优势,助力嘉银科技业务系统实现灵活扩缩容,在业务效率和成本优化上持续取得突破,保证服务的敏捷性和稳定性,并节省超过 20% 的成本。
跨云日志统一:对象存储数据导入 SLS 的智能之路
从 AWS S3 到阿里云 SLS,打造跨云日志智能分析的高效通路——实时发现、弹性导入、格式自适应、成本优化,让海量日志从存储真正走向业务洞察。
一次内存诊断,让资源利用率提升 40%:揭秘隐式内存治理
阿里云云监控 2.0 推出 SysOM 底层操作系统诊断能力,基于 eBPF + BTF 协同分析,无需侵入业务,即可一键完成从物理页到文件路径、再到容器进程的全栈内存归因,让“黑盒内存”无所遁形。
官宣上线!RocketMQ for AI:企业级 AI 应用异步通信首选方案
RocketMQ 专门为 AI 场景推出了全新Lite Topic 模型,目前已在阿里云云消息队列 RocketMQ 版 5.x 系列实例上正式发布,并会逐步贡献到 Apache RocketMQ 开源社区,欢迎大家使用。
事件驱动重塑 AI 数据链路:阿里云 EventBridge 发布 AI ETL 新范式
“一个简单的数据集成任务,开始时总是轻松愉快的,但随着业务扩展,数据源越来越多,格式越来越乱,整个数据链路就会变得一团糟。”陈涛在演讲中指出了当前 AI 数据处理的普遍困境。扩展难、运维难、稳定性差,这三大挑战已成为制约 AI 应用创新和落地的关键瓶颈。针对这些痛点,在2025云栖大会期间,阿里云重磅发布了事件驱动 AI ETL 新范式,其核心产品 EventBridge 通过深度集成 AI 能力,为开发者提供了一套革命性的解决方案,旨在彻底改变 AI 时代的数据准备与处理方式。
支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
通过使用社区官方提供的超过 20 种 RAG 数据源和 20 种 Tool Calling 接口,开发者可以轻松接入多种外部数据源(如 GitHub、飞书、云 OSS 等)以及调用各种工具(如天气预报、地图导航、翻译服务等)。这些默认实现大大简化了智能体的开发过程,使得开发者无需从零开始,便可以快速构建功能强大的智能体系统。通过这种方式,智能体不仅能够高效处理复杂任务,还能适应各种应用场景,提供更加智能、精准的服务。
打通可观测性的“任督二脉”:实体与关系的终极融合
阿里云推出图查询能力,基于 graph-match、graph-call、Cypher 三重引擎,实现服务依赖、故障影响、权限链路的秒级可视化与自动化分析,让可观测从‘看板时代’迈向‘图谱时代’。
基于 UModel 高效构建可观测场景统一实体搜索引擎
在复杂的云原生环境中,服务、Pod、主机等可观测实体动辄成千上万,散落在 APM、K8s、云资源等多个系统中。当故障发生时,如何快速从海量数据中“找到那个出问题的服务”,成为 SRE 和运维工程师的核心挑战。
从系统监控到业务洞察:ARMS 自定义指标采集功能全解析
阿里云应用实时监控服务 ARMS 推出自定义指标采集功能,让 APM 真正深入业务核心,订单、库存、转化率等核心数据尽在掌控!
AI 原生应用开发实战营·深圳站精彩回顾 & PPT 下载
近日,阿里云AI原生应用开发实战营 · 深圳站圆满落幕。继北京、上海、杭州、成都等城市之后,本场活动吸引了130+名技术从业者深度参与。活动聚焦 AI Agent 领域的前沿技术与落地实践,深度分享AI 原生应用架构趋势与实践、AI应用托管、AI 开放平台、大模型可观测&AIOps、异步化的Agent事件驱动等热门技术议题,并设置了动手实操环节。
移动端性能监控探索:鸿蒙 NEXT 探针架构与技术实现
阿里云 ARMS 团队倾力打造的鸿蒙 NEXT SDK,为鸿蒙应用提供了业界领先的全链路监控解决方案。这不仅仅是一个 SDK,更是您洞察用户体验、优化应用性能的智能伙伴。
【实战经验】C/C++右移高位补0还是1?
本文探讨了C/C++中右移运算时高位补0还是补1的问题。通过示例代码分析,揭示了右移规则:无符号类型高位补0;有符号类型根据正负决定(正数补0,负数补1)。文中列举了可能导致错误的场景,并提供了两种规避措施——使用无符号类型和掩码校正,确保结果符合预期。最后总结指出,右移运算虽常见,但若处理不当易引发隐晦Bug,需谨慎对待。
Entity Explorer:基于 UModel 的实体探索平台
阿里云 Entity Explorer 正式发布:基于 UModel 的智能实体探索平台,实现亿级实体秒级检索、关系拓扑自动构建、详情页动态渲染,让可观测性从“数据堆砌”迈向“业务洞察”。
邀您参加丨云栖大会中企出海技术分论坛
【云栖大会中企出海技术分论坛专场】2025 年 9 月 25 日 上午 9:30-12:20 ,阿里云·云栖小镇 D2-2 馆丨“中企出海技术分论坛” 即将启幕!
【实战指南】7个设置/获取接口了解Linux时间管理
本文系统介绍了Linux时间管理中的7个关键设置/获取接口,涵盖时间获取(如`time`、`gettimeofday`、`clock_gettime`)、时间设置(如`stime`、`settimeofday`、`clock_settime`)以及时间转换和格式化等内容。文章详细解析了绝对时间和相对时间的概念,包括GMT、UTC及本地时间的区别,并通过实例测试展示了各接口的使用方法与特性。此外,还探讨了时区设置对时间计算的影响,强调在实际开发中推荐使用UTC作为基准时间以避免时区变化带来的问题。总结部分结合项目经验,提醒开发者注意时间服务的重要性及潜在风险,例如时间跳跃可能引发的应用故障。
AgentScope Java v1.0 首播解读!
阿里云云原生团队做客 DataWhale「动手学 Java Agentic 应用开发」主题直播间,为大家实时带来 AgentScope Java v1.0 的深度解读,无论你是刚接触智能体的新手,还是正在探索企业级 AI 应用,这场直播都值得加入! 讲师/嘉宾简介 江河清|AgentScope Java 核心成员
告别手动埋点!Android 无侵入式数据采集方案深度解析
传统的Android应用监控方案需要开发者在代码中手动添加埋点,不仅侵入性强、工作量大,还难以维护。本文深入探讨了基于字节码插桩技术的无侵入式数据采集方案,通过Gradle插件 + AGP API + ASM的技术组合,实现对应用性能、用户行为、网络请求等全方位监控,真正做到零侵入、易集成、高稳定。
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
DeepSeek + Higress AI 网关/Spring AI Alibaba 案例征集
诚挚地感谢每一位持续关注并使用 Higress 和 Spring AI Alibaba 的朋友,DeepSeek + Higress AI 网关/Spring AI Alibaba 案例征集中。
从“看曲线”到“懂问题”:MetricSet Explorer 如何重构指标分析体验
告警太多看不过来?MetricSet Explorer 来帮你“挑重点”:自动识别异常、智能分组聚类、一键定位根因,让百万级指标也能秒级洞察!
【本不该故障系列】告别资源“不确定性”,SAE 如何破解刚性交付核心困境
资源刚性交付是保障线上业务稳定的核心。阿里云SAE通过全托管Serverless架构,实现资源无限弹性、性能100%隔离、按需秒级计费,破解自建K8s在库存、性能、成本等方面的系统性困境,让企业无需妥协即可获得确定性交付能力。
多源 RAG 自动化处理:从 0 到 1 构建事件驱动的实时 RAG 应用
当企业想用大模型和内部非公开信息打造智能问答系统时,RAG(Retrieval-Augmented Generation,检索增强生成)已成为必备技术。然而,在实际落地中,构建 RAG 应用的数据准备过程繁琐复杂且充满挑战,让很多企业和开发者望而却步。本文将介绍构建 RAG 的最佳实践:通过阿里云事件总线 EventBridge 提供的多源 RAG 处理方案,基于事件驱动架构为企业 AI 应用打造高效、可靠、自动化的数据管道,轻松解决 RAG 数据处理难题。
森马如何用阿里云 AI 网关,轻松实现“AI+业务”高效落地
森马快速实现 AI 转型,通过阿里云 AI 网关(即 Higress 企业版)及注册配置中心 Nacos3.0 实现了多模型多 MCP server 统一接入统一管理统一配置,将存量服务一键转换为 MCP server,使 AI 与生产业务相结合,综合提效 30%。
从“天书”到源码:HarmonyOS NEXT 崩溃堆栈解析实战指南
本文详解如何利用 hiAppEvent 监控并获取 sourcemap、debug so 等核心产物,剖析了 hstack 工具如何将混淆的 Native 与 ArkTS 堆栈还原为源码,助力开发者掌握异常分析方法,提升应用稳定性。
Android 崩溃监控实战:一次完整的生产环境崩溃排查全流程
某 App 新版上线后收到大量用户投诉 App 闪退和崩溃。仅凭一条崩溃日志和会话追踪,团队如何在2小时内锁定「快速刷新导致数据竞态」这一根因?本文带你复现真实生产环境下的完整排查路径:从告警触发、堆栈分析、符号化解析,到用户行为还原——见证 RUM 如何让“无法复现的线上崩溃”无所遁形。
打造你的专属 AI 导游:基于 RocketMQ 的多智能体异步通信实战
在现代 AI 应用中,多智能体(Multi-Agent)系统已成为解决复杂问题的关键架构。然而,随着智能体数量增多和任务复杂度提升,传统的同步通信模式逐渐暴露出级联阻塞、资源利用率低和可扩展性差等瓶颈。为应对这些挑战,RocketMQ for AI 提供了面向 AI 场景的异步通信解决方案,通过事件驱动架构实现智能体间的高效协作。本文将探讨和演示如何利用 RocketMQ 构建一个高效、可靠且可扩展的多智能体系统,以解决企业级 AI 应用中的核心通信难题。
故障发现提速 80%,运维成本降 40%:魔方文娱的可观测升级之路
魔方文娱携手阿里云构建全栈可观测体系,实现故障发现效率提升 80%、运维成本下降 40%,并融合 AI 驱动异常检测,迈向智能运维新阶段。
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
零代码改造!LoongSuite AI 采集套件观测实战
在 AI 时代,随着模型和应用侧的快速演化,对于推理过程,成本和性能显得尤为重要,而端到端的 AI 可观测是其中至关重要的一环。本文将介绍端到端 AI 可观测的基本概念与痛点,并通过阿里云可观测团队最新开源的 AI 采集套件 LoongSuite Agent 来对大模型应用进行全链路可观测以解决这些痛点。帮助客户无侵入,低成本地进行全链路的大模型可观测。
从体验到系统工程丨上手评测国内首款 AI 电商 App
近期,1688 推出了 1688 AI App,这貌似是国内第一个电商领域的独立 AI App 应用(若不是,欢迎评论指正)。本文试图通过产品界面这一入口,窥探其背后的系统工程。
Log/Trace/Metric 完成 APIServer 可观测覆盖
12 月 11 日,OpenAI 出现了全球范围的故障,影响了 ChatGPT/API/Sora/Playground/Labs 等服务,持续时间超过四个小时。究其背后原因,主要是新部署的服务产生大量的对 K8s APIServer 的请求,导致 APIServer 负载升高,最终导致 DNS 解析不能工作,影响了数据面业务的功能。面对 APIServer 这类公用基础组件,如何通过 Log/Trace/Metric 完成一套立体的覆盖体系,快速预警、定位根因,降低不可用时间变得非常重要。
已上线!云监控 2.0 面向实体的全链路日志审计与风险溯源
在云端,一次 API 调用背后可能隐藏着一场数据泄露;一个异常进程背后,或许是 AK 泄露引发的链式攻击。传统日志“看得见却看不懂”,而云监控 2.0 日志审计通过 UModel 实体建模,将分散在 ACS、K8s、主机各层的日志自动串联。
16 倍性能提升,成本降低 98%! 解读 SLS 向量索引架构升级改造
大规模数据如何进行语义检索? 当前 SLS 已经支持一站式的语义检索功能,能够用于 RAG、Memory、语义聚类、多模态数据等各种场景的应用。本文分享了 SLS 在语义检索功能上,对模型推理和部署、构建流水线等流程的优化,最终带给用户更高性能和更低成本的针对大规模数据的语义索引功能。
无需复杂正则:SLS 新脱敏函数让隐私保护更简单高效
SLS 推出 mask 脱敏函数,支持 keyword 和 buildin 模式,简化敏感数据识别与处理,提升脱敏效率与性能,适用于结构化及非结构化日志。
自建 DeepSeek 时代已来,联网搜索如何高效实现
随着 DeepSeek 等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低 90% 以上。基于 7B/13B 参数量的模型在常规 GPU 服务器上即可获得商业级响应效果,配合 Higress 开源 AI 网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。
这款流行 AI 工具被盗用挖取加密货币,这些隐患你需要知道
Docker 镜像被注入挖矿脚本并不是个别现象,而是一个需要引起重视的安全问题,本文向大家分享下 Higress 防范此类风险的相关经验。
阿里云操作系统控制台一招解决网络丢包
阿里云 SysOM 丢包诊断,通过内核级智能分析,自动识别丢包环节,精准定位 netfilter 规则、异常 hook 钩子等根源,让复杂网络故障排查从“专家依赖”走向“平台化解决”。
揭开 Java 容器“消失的内存”之谜:云监控 2.0 SysOM 诊断实践
JVM 没满,Pod 却挂了?可能是 C2 Compiler 在“偷偷吃内存”。阿里云云监控 2.0 的 SysOM 系统诊断帮你穿透 JNI 黑盒,找出真正的内存元凶!
SOFA AI 网关基于 Higress 的落地实践
SOFA 商业化团队为满足客户 AI 业务的发展需求,基于开源 Higress 内核构建,推出了 SOFA AI 网关,专为 SOFA 场景深度优化、能力增强,是面向 AI 需求的智能网关解决方案。