配置驱动的动态 Agent 架构网络:实现高效编排、动态更新与智能治理
本文所阐述的配置驱动智能 Agent 架构,其核心价值在于为 Agent 开发领域提供了一套通用的、可落地的标准化范式。
构建开放智能体生态:AgentScope 如何用 A2A 协议与 Nacos 打通协作壁垒?
AgentScope 全面支持 A2A 协议和 Nacos 智能体注册中心,实现跨语言跨框架智能体互通。
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
不重启、不重写、不停机:SLS 软删除如何实现真正的“无感数据急救”?
SLS 全新推出的「软删除」功能,以接近索引查询的性能,解决了数据应急删除与脏数据治理的痛点。2 分钟掌握这一数据管理神器。
领航智联时代:阿里云 MQTT+Kafka 车/物联网实时数据分析解决方案
该解决方案深度整合移动端/设备端连接利器 MQTT 与大数据流处理核心引擎 Kafka,为车联网及物联网行业提供高可靠、高性能、极简运维的数据处理链路。
RUM 链路打通实战:打破移动端可观测性黑洞
本文介绍了阿里云 RUM 如何通过端到端链路追踪(统— TracelD、W3C/SW8 协议透传)打破移动端可观测性“黑洞’,实现从用户操作到数据库的全链路监控与精准问题定位。
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
【k8s-1.34.2安装部署】十.gateway Api v1.4.0安装
本章介绍Kubernetes Gateway API部署,重点讲解Istio作为更新最快、兼容性最佳的控制器。内容涵盖Istio安装、Gateway API部署(含实验版与正式版)、各类路由(HTTP、gRPC、TCP、UDP)配置示例及镜像拉取失败解决方案,助您快速上手Gateway API实践。
应对 Nginx Ingress 退役,是时候理清这些易混淆的概念了
本文希望提供一种更简单的方式,来理解这些容易混淆的技术概念:Nginx、Ingress、Ingress Controller、Ingress API、Nginx Ingress、Higress、Gateway API。
阿里云发布《AI 原生应用架构白皮书》
阿里云联合阿里巴巴爱橙科技,共同发布《AI 原生应用架构白皮书》,围绕 AI 原生应用的 DevOps 全生命周期,从架构设计、技术选型、工程实践到运维优化,对概念和重难点进行系统的拆解,并尝试提供一些解题思路。白皮书覆盖 AI 原生应用的 11 大关键要素,获得 15 位业界专家联名推荐,来自 40 多位一线工程师实践心的,全书合计超 20w 字,分为 11 章。
ZooKeeper 实战指南:从入门到场景解析
Apache ZooKeeper是分布式系统的协调核心,本文带你快速搭建环境,掌握Znode操作与Watcher机制,深入理解其在分布式锁、配置管理、服务发现等场景的应用,并解析美团Leaf中的实践案例。
构建定时 Agent,基于 Spring AI Alibaba 实现自主运行的人机协同智能 Agent
借助 Spring AI Alibaba 框架,开发者可快速实现定制化自动定时运行的 Agent,构建数据采集、智能分析到人工参与决策的全流程AI业务应用。
零代码改造 + 全链路追踪!Spring AI 最新可观测性详细解读
Spring AI Alibaba 通过集成 OpenTelemetry 实现可观测性,支持框架原生和无侵入探针两种方式。原生方案依赖 Micrometer 自动埋点,适用于快速接入;无侵入探针基于 LoongSuite 商业版,无需修改代码即可采集标准 OTLP 数据,解决了原生方案扩展性差、调用链易断链等问题。未来将开源无侵入探针方案,整合至 AgentScope Studio,并进一步增强多 Agent 场景下的观测能力。
UModel 数据治理:运维世界模型构建实践
阿里云推出 UModel 统一建模框架,将实体、关系、数据、知识、行动融为一体,为大模型提供可推理、可交互的运维世界模型,推动可观测从‘被动响应’迈向‘主动优化’的新阶段。
面向多租户云的 IO 智能诊断:从异常发现到分钟级定位
当 iowait 暴涨、IO 延迟飙升时,你是否还在手忙脚乱翻日志?阿里云 IO 一键诊断基于动态阈值模型与智能采集机制,实现异常秒级感知、现场自动抓取、根因结构化输出,让每一次 IO 波动都有据可查,真正实现从“被动响应”到“主动洞察”的跃迁。
iOS 崩溃排查不再靠猜!这份分层捕获指南请收好
从 Mach 内核异常到 NSException,从堆栈遍历到僵尸对象检测,阿里云 RUM iOS SDK 基于 KSCrash 构建了一套完整、异步安全、生产可用的崩溃捕获体系,让每一个线上崩溃都能被精准定位。
AgentScope Java 答疑时间:开发者近期最关心的12个问题
近日,AgentScope Java V1.0 版本正式发布,全面对齐 Python 版核心能力,为 Java 开发者带来了构建企业级 Agentic 应用强大的开源方案。在最近与 DataWhale 合作的 AgentScope Java 解读线上直播间中,我们收到了大家的热情提问。为了方便大家集中查阅,我们整理了其中最高频的 Q&A,由 AgentScope Java 的核心开发者为大家一次性说清讲透!
云拨测:当“正常变更”摧毁全球网络时,谁来守护你的业务可用性?
一次权限变更,引发全球边缘网络瘫痪4小时,数百万网站返回 5XX,连状态页也宕机。故障源于“正常的变更”,暴露了企业对服务商的盲目信任。当内部监控失效,唯有云拨测能从真实用户视角,独立验证“服务是否可用”。
MCP 网关实战:基于 Higress + Nacos 的零代码工具扩展方案
本文会围绕如何基于 Higress 和 Nacos 的 docker 镜像在 K8s 集群上进行分角色部署。
浅谈 Agent 开发工具链演进历程
模型带来了意识和自主性,但在输出结果的确定性和一致性上降低了。无论是基础大模型厂商,还是提供开发工具链和运行保障的厂家,本质都是希望提升输出的可靠性,只是不同的团队基因和行业判断,提供了不同的实现路径。本文按四个阶段,通过串联一些知名的开发工具,来回顾 Agent 开发工具链的演进历程。
MCP Server的五种主流架构与Nacos的选择
本文深入探讨了Model Context Protocol (MCP) 在企业级环境中的部署与管理挑战,详细解析了五种主流MCP架构模式(直连远程、代理连接远程、直连本地、本地代理连接本地、混合模式)的优缺点及适用场景,并结合Nacos服务治理框架,提供了实用的企业级MCP部署指南。通过Nacos MCP Router,实现MCP服务的统一管理和智能路由,助力金融、互联网、制造等行业根据数据安全、性能需求和扩展性要求选择合适架构。文章还展望了MCP在企业落地的关键方向,包括中心化注册、软件供应链控制和安全访问等完整解决方案。
Agentic 时代必备技能:手把手为 Dify 应用构建全链路可观测系统
本文讲述 Dify 平台在 Agentic 应用开发中面临的可观测性挑战,从开发者与运维方双重视角出发,系统分析了当前 Dify 可观测能力的现状、局限与改进方向。
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
再看 AI 网关:助力 AI 应用创新的关键基础设施
AI 网关作为云产品推出已有半年的时间,这半年的时间里,AI 网关从内核到外在都进行了大量的进化,本文将从 AI 网关的诞生、AI 网关的产品能力、AI 网关的开放生态,以及新推出的 Serverless 版,对其进行一个全面的介绍,期望对正在进行 AI 应用落地的朋友,在 AI 基础设施选型方面提供一些参考。
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
基于 RocketMQ SDK 实现了 A2A 协议的 ClientTransport 接口(部分核心代码现已开源),并与 AgentScope 框架深度集成,共同构建了全新的 A2A 智能体通信基座,为多智能体应用提供企业级、高可靠的异步协同方案。
MCP Registry 官方发布:Nacos 原生支持,借助 HiMarket 构建企业级私有 MCP 市场
最近,MCP 社区发布了 MCP Registry(2025‑09‑08,预览版),为公开 MCP Server 提供“统一目录服务和开放 API”。Nacos 已原生支持 MCP Registry API,可直接作为“MCP Registry”对外提供标准 REST/OpenAPI 服务端,天然融入企业现有注册中心与配置治理体系,并与 Higress/HiMarket 对接打通,让企业能够高效的构建自己的私有 MCP 市场。
一文带你玩转 WebSocket 全链路可观测
在 AI 实时交互爆发的时代,WebSocket 成为核心协议。但其双向、长连接、流式传输特性,让传统链路追踪频频失效。阿里云 LoongSuite 基于 OpenTelemetry 标准,结合探针增强与自定义扩展,首次实现 WebSocket 全链路可观测,支持 Span 粒度控制、上下文透传、异步衔接与关键性能指标采集。
阿里云可观测联合 Datadog 发布 OpenTelemetry Go 自动插桩工具
面对 Go 语言长期缺乏成熟自动插桩方案的困境,阿里云联合 Datadog 推出 OpenTelemetry Go 编译时插桩工具,无需修改代码,只需 ./otel-go build,即可为 HTTP、gRPC、Redis 等组件自动注入链路追踪与指标采集能力。现已开源,欢迎试用!
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
AI 网关代理 RAG 检索:Dify 轻松对接外部知识库的新实践
Higress AI 网关通过提供关键桥梁作用,支持 Dify 应用便捷对接业界成熟的 RAG 引擎。通过 AI 网关将 Dify 的高效编排能力与专业 RAG 引擎的检索效能结合,企业可在保留现有 Dify 应用资产的同时,有效规避其内置 RAG 的局限,显著提升知识驱动型 AI 应用的生产环境表现。
Nacos 3.1.0 正式发布,支持 A2A 注册中心与 MCP 注册协议增强
3.1.0 发布核心全新功能-Agent 注册中心,助力构建基于 A2A 协议的多 Agent 协作的AI应用,同时 MCP 注册中心适配最新 MCP 官方注册中心协议及升级优化多项核心功能。
事件驱动重塑 AI 数据链路:阿里云 EventBridge 发布 AI ETL 新范式
“一个简单的数据集成任务,开始时总是轻松愉快的,但随着业务扩展,数据源越来越多,格式越来越乱,整个数据链路就会变得一团糟。”陈涛在演讲中指出了当前 AI 数据处理的普遍困境。扩展难、运维难、稳定性差,这三大挑战已成为制约 AI 应用创新和落地的关键瓶颈。针对这些痛点,在2025云栖大会期间,阿里云重磅发布了事件驱动 AI ETL 新范式,其核心产品 EventBridge 通过深度集成 AI 能力,为开发者提供了一套革命性的解决方案,旨在彻底改变 AI 时代的数据准备与处理方式。
解读阿里云刚发布的《AI 原生应用架构白皮书》
阿里云在云栖大会重磅发布了《AI 原生应用架构白皮书》,该白皮书覆盖 AI 原生应用的 11 大关键要素,获得业界 15 位专家联名推荐,来自 40 多位一线工程师实践心得,全书合计超 20w 字,分为 11 章,全面、系统地解构 AI 原生应用架构,包含了 AI 原生应用的 11 大关键要素,模型、框架、提示词、RAG、记忆、工具、网关、运行时、可观测、评估和安全。本文整理自阿里云智能技术专家李艳林在云栖大会现场的解读。
生成更智能,调试更轻松,SLS SQL Copilot 焕新登场!
本文是阿里云日志服务(SLS)首次对外系统性地揭秘 SLS SQL Copilot 背后的产品理念、架构设计与核心技术积淀。我们将带你深入了解,这一智能分析助手如何从用户真实需求出发,融合前沿 AI 能力与 SLS 十余年日志分析最佳实践,打造出面向未来的智能化日志分析体验。
打通可观测性的“任督二脉”:实体与关系的终极融合
阿里云推出图查询能力,基于 graph-match、graph-call、Cypher 三重引擎,实现服务依赖、故障影响、权限链路的秒级可视化与自动化分析,让可观测从‘看板时代’迈向‘图谱时代’。
【实战经验】C/C++右移高位补0还是1?
本文探讨了C/C++中右移运算时高位补0还是补1的问题。通过示例代码分析,揭示了右移规则:无符号类型高位补0;有符号类型根据正负决定(正数补0,负数补1)。文中列举了可能导致错误的场景,并提供了两种规避措施——使用无符号类型和掩码校正,确保结果符合预期。最后总结指出,右移运算虽常见,但若处理不当易引发隐晦Bug,需谨慎对待。