GraphRAG 与 RAG 的比较分析
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
阿里云 EMR StarRocks 在七猫的应用和实践
本文整理自七猫资深大数据架构师蒋乾老师在 《阿里云 x StarRocks:极速湖仓第二季—上海站》的分享。
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
ChunkServer 原理与架构详解
【8月更文第30天】在分布式文件系统中,ChunkServer 是一个重要的组件,负责存储文件系统中的数据块(chunks)。ChunkServer 的设计和实现对于确保数据的高可用性、一致性和持久性至关重要。本文将深入探讨 ChunkServer 的核心原理和内部架构设计,并通过代码示例来说明其实现细节。
Web服务器安全最佳实践
【8月更文第28天】随着互联网的发展,Web服务器成为了企业和组织的重要组成部分。然而,这也使得它们成为黑客和恶意软件的目标。为了确保数据的安全性和系统的稳定性,采取适当的安全措施至关重要。本文将探讨一系列保护Web服务器的最佳策略和技术,并提供一些实用的代码示例。
PolarDB 与传统数据库的性能对比分析
【8月更文第27天】随着云计算技术的发展,越来越多的企业开始将数据管理和存储迁移到云端。阿里云的 PolarDB 作为一款兼容 MySQL 和 PostgreSQL 的关系型数据库服务,提供了高性能、高可用和弹性伸缩的能力。本文将从不同角度对比 PolarDB 与本地部署的传统数据库(如 MySQL、PostgreSQL)在性能上的差异。
淘宝官方商品、交易、订单、物流、插旗接口接入说明
这些接口涉及淘宝店铺订单管理的关键方面,包括订单列表、订单详情及订单物流信息的获取。订单列表接口(如`taobao.trades.sold.get`和`taobao.topats.trades.sold.get`)帮助商家快速了解订单概览,进行基本管理和统计。订单详情接口(如`taobao.trade.fullinfo.get`和`taobao.topats.trades.fullinfo.get`)提供单个订单的全面信息,便于发货准备和服务支持。订单物流接口则允许跟踪订单的物流状态,确保配送顺畅。使用这些接口需遵循淘宝开放平台的规定,并关注API调用限制与更新。
自然语言处理中的语义理解和生成技术
【8月更文第18天】自然语言处理(NLP)是计算机科学的一个重要分支,其目标是使计算机能够理解、解析和生成人类语言。近年来,基于Transformer架构的预训练模型(如BERT、GPT系列)已经极大地推动了NLP的发展。本文将探讨这些模型在对话系统、文本生成、情感分析等领域的应用,并讨论相关技术挑战。
数据工作中的自动化与AI融合实践
【8月更文第13天】随着大数据和人工智能(AI)技术的发展,数据处理和分析变得越来越重要。本文将探讨如何通过自动化工具和AI技术来优化数据处理流程,包括数据清洗、特征工程、模型训练以及结果可视化等步骤。我们将使用Python编程语言及其相关库(如Pandas、Scikit-learn和TensorFlow)作为实现手段。
LangChain与向量数据库:高效的信息检索方案
【8月更文第4天】随着自然语言处理技术的发展,特别是深度学习的进步,我们能够更加高效地处理大量的文本数据。LangChain 作为一种强大的工具链,旨在简化和加速构建复杂的自然语言处理应用程序。结合向量数据库,LangChain 可以实现高效且精准的信息检索功能。本文将探讨这一组合的工作原理,并通过一个具体的实现案例来展示其在实际应用中的效果。
云上智能风控:构建金融安全的智能防线
云上智能风控系统具有良好的灵活性和可扩展性。随着金融市场的不断变化和技术的不断发展,系统能够灵活调整风控策略和算法模型以适应新的风险类型和场景。同时,系统还能够根据业务需求进行功能扩展和升级以满足不同金融机构的个性化需求。
想要刻录蓝光光盘吗? 快来了解最好的蓝光刻录软件!
在数字娱乐蓬勃发展的今天,追求高清震撼的视听体验已成为趋势。面对众多高清视频制作工具的选择难题,DVDFab Blu-ray Creator脱颖而出,被誉为最佳蓝光刻录软件。它不仅支持多种视频格式输入(如MP4, MKV)及高清1080p输出,还能制作个性化菜单,兼容不同输出介质(BD-R, BD-RE等)。只需几步即可完成从视频导入到成品输出的全过程,无论是家庭回忆还是专业项目都能完美呈现。
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
JavaScript 使用axios库发送 post请求给后端, 给定base64格式的字符串数据和一些其他参数, 使用表单方式提交, 并使用onUploadProgress显示进度
使用 Axios 发送包含 Base64 数据和其他参数的 POST 请求时,可以通过 `onUploadProgress` 监听上传进度。由于整个请求体被视为一个单元,所以进度可能不够精确,但可以模拟进度反馈。前端示例代码展示如何创建一个包含 Base64 图片数据和额外参数的 `FormData` 对象,并在上传时更新进度条。后端使用如 Express 和 Multer 可处理 Base64 数据。注意,实际进度可能不如文件上传精确,显示简单加载状态可能更合适。
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
「Python入门」Python代码规范(风格)
**Python编码规范摘要** - 编码:使用UTF-8编码,文件开头可声明`# -- coding: utf-8 --`。 - 分号:避免在行尾使用,不用于分隔命令。 - 行长:不超过80字符,长表达式可使用括号换行。 - 缩进:使用4个空格,禁止混用tab。 - 注释:行注释始于`#`和空格,块注释和文档注释遵循特定格式。 - 空行:函数和类定义间用2空行,方法间1空行,内部适当空行。 - 空格:运算符两侧各空一格,逗号后空格,括号内不空格。 - 命名:模块小写,变量下划线分隔,类驼峰式,布尔变量前缀`is_`。 - 引号:保持一致性,可使用单引号或双引号。
「Python大数据」LDA主题分析模型
使用Python进行文本聚类,流程包括读取VOC数据、jieba分词、去除停用词,应用LDA模型(n_components=5)进行主题分析,并通过pyLDAvis生成可视化HTML。关键代码涉及数据预处理、CountVectorizer、LatentDirichletAllocation以及HTML文件的本地化处理。停用词和业务术语列表用于优化分词效果。
非对称加密的日常实践应用:以RSA加密为例
**RSA加密简介与Python实现** RSA,一种非对称加密技术,基于大数因子分解,用于数据加密和完整性保护。本文介绍了RSA基本原理,包括密钥生成(选取大质数p和q,计算n和φ(n),选择公钥指数e和私钥指数d),并展示了使用Python `cryptography` 库生成密钥对、加密和解密消息的代码示例。通过这些步骤,读者可理解RSA在网络安全中的应用,如HTTPS和数字签名。
经典大数据处理框架与通用架构对比
【6月更文挑战第15天】本文介绍Apache Beam是谷歌开源的统一数据处理框架,提供可移植API,支持批处理和流处理。与其他架构相比,Lambda和Kappa分别专注于实时和流处理,而Beam在两者之间提供平衡,具备高实时性和数据一致性,但复杂性较高。选择架构应基于业务需求和场景。
PyTorch快速入门与深度学习模型训练
这篇文章是PyTorch的入门指南,介绍了PyTorch作为深度学习框架的基本概念和使用方法。内容包括PyTorch的背景、基础操作如张量创建、运算、自动微分,以及如何构建和训练简单的全连接神经网络模型进行MNIST手写数字识别。通过这篇文章,读者可以快速了解如何在PyTorch中搭建和训练深度学习模型。
Pandas在Python面试中的应用与实战演练
【4月更文挑战第16天】本文介绍了Python数据分析库Pandas在面试中的常见问题和易错点,包括DataFrame和Series的创建、数据读写、清洗预处理、查询过滤、聚合分组、数据合并与连接。强调了数据类型检查、索引理解、避免过度使用循环、内存管理和正确区分合并与连接操作的重要性。通过掌握这些知识和代码示例,可提升面试者在Pandas方面的专业能力。
Spark安装教程
该教程详细介绍了在Linux环境下安装Spark 3.1.2的步骤。首先,检查JDK版本需为1.8。接着,下载Spark资源并设置环境变量`SPARK_HOME`。配置`spark-env.sh`和`yarn-site.xml`文件,禁用内存检查。然后,重启Hadoop集群,启动Spark集群,并通过`jps -ml`检查Spark Master和Worker。可以通过Web UI访问Spark状态,并使用`spark-shell`测试Scala交互环境及Spark on Yarn。最后,学习如何关闭Spark集群。
Flink报错问题之使用debezium-json format报错如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
60个令人兴奋的ThreeJS网站示例
Three.js是一个JavaScript库,它使在Web上创建3D图形比直接使用WebGL容易得多。Three.js是网络上最受欢迎的3D JavaScript库,很容易上手。因此,在这篇文章中,我将展示一些创意网站的例子,以获得灵感,以使用Three.js JavaScript库创建和动画令人兴奋的基于3D浏览器的图形。
阿里云机器学习PAI全新推出特征平台 (Feature Store),助力AI建模场景特征数据高效利用
机器学习平台 PAI 推出特征平台(PAI-FeatureStore),在所有需要特征的AI建模场景,用户可通过 Feature Store 轻松地共享和重用特征数据,减少资源和时间成本、提升工作效率。
云原生大数据架构实践与思考-DataFunTalk
导读: 作者:振策-阿里云计算平台-产品解决方案, 20230805 本文将分享当前云原生大数据架构的发展历程/架构定义/核心能力/应用场景及趋势思考。主要包括以下四个部分: - 从大数据上云看架构 - 云原生数据平台的核心能力 - Data+AI with Cloud-Native - 未来趋势与思考
阿里云大数据AI产品年度盘点
阿里云大数据AI产品年度盘点,涵盖2022技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据AI方面最新动态。
「开源人说」| 大数据王峰——云原生时代,做不忘初心开源牧码人
王峰 阿里巴巴开源委员会大数据AI领域副主席 阿里云开源大数据平台负责人 Flink中文社区发起人
Flink CDC 2.2 正式发布,新增四种数据源,支持动态加表,提供增量快照框架
Flink CDC 2.2 正式发布,文末有一则消息或许你会感兴趣~
深度解析数据湖存储方案Lakehouse架构【Databricks 数据洞察公开课】
从数据仓库、数据湖的优劣势,湖仓一体架构的应用和优势等多方面深度解析Lakehouse架构。
小红书推荐大数据在阿里云上的实践
本篇内容主要分三个部分,在第一部分讲一下实时计算在推荐业务中的使用场景。第二部分讲一下小红书是怎么使用Flink的一些新的功能。第三部分主要是讲一些OLAP的实时分析的场景,以及和阿里云MC-Hologres的合作。
【最佳实践】阿里云 Elasticsearch 向量检索4步搭建“以图搜图”搜索引擎
“图片搜索”是作为导购类网站,比较常见的一种功能,其实现的方式也有多种。但如何做到快速、精准、简单等特性,本文给你答案。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。