卡尔曼滤波 KF | 扩展卡尔曼滤波 EKF (思路流程和计算公式)
本文分析卡尔曼滤波和扩展卡尔曼滤波,包括:思路流程、计算公式、简单案例等。滤波算法,在很多场景都有应用,感觉理解其思路和计算过程比较重要。
3D目标检测数据集 KITTI(标签格式解析、3D框可视化、点云转图像、BEV鸟瞰图)
本文介绍在3D目标检测中,理解和使用KITTI 数据集,包括KITTI 的基本情况、下载数据集、标签格式解析、3D框可视化、点云转图像、画BEV鸟瞰图等,并配有实现代码。
Apache Flink X Apache Doris 构建极速易用的实时数仓架构
在本次分享中,将为大家介绍如何基于 Apache Doris 和 Apache Flink 构建极速易用的实时数仓架构。
大神都这么做,让 Kibana 搜索语法 query string 也能轻松上手
kibana 的搜索框默认选择了 query string 的搜索语法,虽然简洁却不简单,本文来帮大家如何轻松上手;
PB级数据量背后阿里云 Elasticsearch 的内核优化实践
本文将揭秘阿里云在面对 PB 级数据量挑战下所做的内核优化实践。
Tokenformer:基于参数标记化的高效可扩展Transformer架构
本文是对发表于arXiv的论文 "TOKENFORMER: RETHINKING TRANSFORMER SCALING WITH TOKENIZED MODEL PARAMETERS" 的深入解读与扩展分析。主要探讨了一种革新性的Transformer架构设计方案,该方案通过参数标记化实现了模型的高效扩展和计算优化。
数据治理工作的持续评估与优化策略
数据治理工作的持续评估与优化是企业实现数据价值最大化的关键。通过明确目标、建立评估体系、实施定期评估、制定优化策略以及建立反馈机制,企业可以不断提升数据治理水平,为业务决策提供有力支持,推动企业持续健康发展。在这个过程中,保持对新技术、新方法的关注与探索,也是确保数据治理工作与时俱进的重要途径。
图像数据增强库综述:10个强大图像增强工具对比与分析
在深度学习和计算机视觉领域,数据增强是提升模型性能和泛化能力的关键技术。本文全面介绍了10个广泛使用的图像数据增强库,分析其特点和适用场景,帮助研究人员和开发者选择最适合需求的工具。这些库包括高性能的GPU加速解决方案(如Nvidia DALI)、灵活多功能的Albumentations和Imgaug,以及专注于特定框架的Kornia和Torchvision Transforms。通过详细比较各库的功能、特点和适用场景,本文为不同需求的用户提供丰富的选择,助力深度学习项目取得更好的效果。选择合适的数据增强库需考虑性能需求、任务类型、框架兼容性及易用性等因素。
面向大规模分布式训练的资源调度与优化策略
【8月更文第15天】随着深度学习模型的复杂度不断提高,对计算资源的需求也日益增长。为了加速训练过程并降低运行成本,高效的资源调度和优化策略变得至关重要。本文将探讨在大规模分布式训练场景下如何有效地进行资源调度,并通过具体的代码示例来展示这些策略的实际应用。
使用Python进行数据预处理与清洗的最佳实践
本文探讨了Python在数据预处理和清洗中的关键作用。预处理包括数据收集、整合、探索、转换和标准化,而清洗则涉及缺失值、重复值、异常值的处理及数据格式转换。文中提供了使用pandas库进行数据读取、缺失值(如用平均值填充)和重复值处理、异常值检测(如IQR法则)以及数据转换(如min-max缩放)的代码示例。此外,还讲解了文本数据清洗的基本步骤,包括去除标点、转换为小写和停用词移除。整体上,文章旨在帮助读者掌握数据预处理和清洗的最佳实践,以提高数据分析的准确性和效率。
Python 3.x与Python 2.x:不兼容性的深度解析
Python 3.x与Python 2.x之间的不兼容性是一个复杂而重要的问题。尽管迁移可能会带来一些挑战和困难,但考虑到Python 2.x已经停止支持以及Python 3.x带来的诸多改进和优势,迁移是不可避免的。通过了解变化、使用兼容工具、逐步迁移、利用社区资源、编写测试、保持更新、考虑使用Python 3.x的特定功能、重新评估第三方库和框架、备份和版本控制以及测试和部署等策略,你可以成功地将你的代码从Python 2.x迁移到Python 3.x,并享受Python 3.x带来的新功能和改进.
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
大数据项目管理:从需求分析到成果交付的全流程指南
【4月更文挑战第9天】本文介绍了大数据项目从需求分析到成果交付的全过程,包括需求收集与梳理、可行性分析、项目规划、数据准备与处理、系统开发与集成,以及成果交付与运维。文中通过实例展示了如何进行数据源接入、数据仓库建设、系统设计、算法开发,同时强调了需求理解、知识转移、系统运维的重要性。此外,还提供了Python和SQL代码片段,以说明具体技术实现。在大数据项目管理中,需结合业务和技术,灵活运用这些方法,确保项目的成功执行和价值实现。
Apache Spark:提升大规模数据处理效率的秘籍
【4月更文挑战第7天】本文介绍了Apache Spark的大数据处理优势和核心特性,包括内存计算、RDD、一站式解决方案。分享了Spark实战技巧,如选择部署模式、优化作业执行流程、管理内存与磁盘、Spark SQL优化及监控调优工具的使用。通过这些秘籍,可以提升大规模数据处理效率,发挥Spark在实际项目中的潜力。
【DSW Gallery】COMMON_IO使用指南
COMMON_IO模块提供了TableReader和TableWriter两个接口,使用TableReader可以读取ODPS Table中的数据,使用TableWriter可以将数据写入ODPS Table。
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
在 PyTorch 中,`pin_memory` 是一个重要的设置,可以显著提高 CPU 与 GPU 之间的数据传输速度。当 `pin_memory=True` 时,数据会被固定在 CPU 的 RAM 中,从而加快传输到 GPU 的速度。这对于处理大规模数据集、实时推理和多 GPU 训练等任务尤为重要。本文详细探讨了 `pin_memory` 的作用、工作原理及最佳实践,帮助你优化数据加载和传输,提升模型性能。
CDGA|数据治理新视角:清洗数据,让数据质量飞跃提升
在数据治理中,标准化处理和确保数据的可溯源性是两个重要的方面。通过标准化处理,我们可以将复杂的数据转化为易于管理和分析的形式;通过确保数据的可溯源性,我们可以验证数据的准确性和可靠性。这两个方面共同构成了数据治理的基石,为数据分析和挖掘提供了有力的支持。因此,我们应该重视数据治理工作,不断完善和优化数据治理体系,以应对日益复杂的数据挑战。
云栖实录 | MaxCompute 迈向下一代的智能云数仓
2024年云栖大会上,阿里云核心自研云原生智能数据仓库产品MaxCompute,在经过一年的深度打磨后,推出了其迈向下一代智能云数据仓的系列主题分享。此次产品发布,充分展示MaxCompute产品领先行业的云数据产品发展理念与核心优势。
DB-GPT v0.6.0 版本更新,发布六大核心新特性!
DB-GPT v0.6.0 版本已发布,这是一个开源的AI原生数据应用开发框架,带来了多项新特性,包括AWEL协议升级至2.0,支持复杂编排;改进的数据应用创建与生命周期管理,支持多模式构建;GraphRAG增强图社区摘要与混合检索,图索引成本降低50%;丰富的Agent Memory类型;支持Text2NLU与Text2GQL微调;GPT-Vis前端可视化升级。这些更新助力企业快速构建智能数据应用,推动数字化转型。
TimeMOE: 使用稀疏模型实现更大更好的时间序列预测
TimeMOE是一种新型的时间序列预测基础模型,通过稀疏混合专家(MOE)设计,在提高模型能力的同时降低了计算成本。它可以在多种时间尺度上进行预测,并且经过大规模预训练,具备出色的泛化能力。TimeMOE不仅在准确性上超越了现有模型,还在计算效率和灵活性方面表现出色,适用于各种预测任务。该模型已扩展至数十亿参数,展现了时间序列领域的缩放定律。研究结果显示,TimeMOE在多个基准测试中显著优于其他模型,特别是在零样本学习场景下。
大规模数据集管理:DataLoader在分布式环境中的应用
【8月更文第29天】随着大数据时代的到来,如何高效地处理和利用大规模数据集成为了许多领域面临的关键挑战之一。本文将探讨如何在分布式环境中使用`DataLoader`来优化大规模数据集的管理与加载过程,并通过具体的代码示例展示其实现方法。
构建坚不可摧的系统安全防线:策略、实践与未来展望
系统安全是维护社会稳定、保障企业运营和个人隐私的重要基石。构建坚不可摧的系统安全防线需要从多个维度出发制定全面的安全策略并付诸实践。未来随着技术的不断进步和应用场景的不断拓展,系统安全将面临更多的挑战和机遇。只有不断创新和完善安全技术和策略才能应对日益复杂的安全威胁和挑战确保系统的安全和稳定运行。
NodeJS代理配置指南:详细步骤和代码示例
**Node.js 代理配置:解决HTTP请求转发与CORS挑战** 在现代开发环境中,Node.js以其高效和灵活性深受青睐,但正确配置代理以处理跨域请求和API调用仍是复杂任务。本文提供全面指南,从基础到高级设置,教授如何在Node.js中使用代理,覆盖httpOptions、npm代理及第三方库的运用,以增强API调用灵活性。
DataWorks操作报错合集之错误提示“ODPS-0130161: Parse exception - invalid token 'WITH', expect 'SEMICOLON'”,该怎么办
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
基于EasyAnimate模型的视频生成最佳实践
EasyAnimate是阿里云PAI平台自主研发的DiT的视频生成框架,它提供了完整的高清长视频生成解决方案,包括视频数据预处理、VAE训练、DiT训练、模型推理和模型评测等。本文为您介绍如何在PAI平台集成EasyAnimate并一键完成模型推理、微调及部署的实践流程。
WebSocket技术详解与应用指南
WebSocket是全双工TCP协议,解决HTTP的单向通信问题,允许服务器主动推送信息。本文档介绍了WebSocket的基本概念、工作原理(基于HTTP握手,通过帧进行数据通信)、应用场景(实时聊天、在线游戏、数据监控等)和实现方法(客户端使用JavaScript API,服务器端有多种编程语言库支持)。学习WebSocket能提升Web应用的实时性和交互性。
Celery:高效异步任务队列的深度解析与应用实践
Celery 是一个流行的 Python 分布式任务队列,用于处理耗时的异步任务,提升Web应用性能。它包括消息中间件(如RabbitMQ、Redis)、任务生产者和消费者。Celery支持异步处理、分布式执行、任务调度、结果存储和错误处理。通过一个发送邮件验证码的实例,展示了如何安装配置、定义任务、触发任务以及查看执行结果。Celery的使用能有效优化应用响应速度和资源管理。
机器学习:升维(Polynomial Regression)
该文介绍了升维的概念,指出在低维度中难以对混合数据进行有效分类,而升维是通过算法将数据投射到高维空间以改善模型性能。文章以多项式回归为例,说明了如何通过升维将非线性关系转换为线性关系,并提供了Python代码示例展示了如何使用`PolynomialFeatures`进行升维。代码结果显示,随着维度增加,模型从欠拟合逐渐过渡到过拟合。
大数据用户画像之基本概念
大数据用户画像利用大数据技术分析用户基本信息、消费行为、兴趣、社交及地理数据,创建详细用户模型,助力企业精准营销。涉及技术包括数据挖掘、大数据处理(Hadoop、Spark)、数据可视化、机器学习和数据库管理。通过用户画像,企业可实现市场定位、个性化推荐、精准广告、产品优化和风险控制。学习该领域需掌握多个技术栈,包括相关算法、工具及业务理解。
Golang深入浅出之-文件与目录操作:os与path/filepath包
【4月更文挑战第26天】Go语言标准库`os`和`path/filepath`提供文件读写、目录操作等功能。本文涵盖`os.Open`, `os.Create`, `os.Mkdir`, `filepath.Join`等API的使用,强调了文件关闭、路径处理、并发写入和权限问题的处理,并给出实战代码示例,帮助开发者高效、安全地操作文件与目录。注意使用`defer`关闭文件,`filepath`处理路径分隔符,以及通过同步机制解决并发写入冲突。
Trying to access array offset on value of type null
你就可以避免在null值上尝试访问数组偏移量的错误。 总的来说,当你遇到这个错误时,你应该回顾你的代码,确保在尝试访问数组偏移量之前,相关的变量已经被正确地初始化为一个数组,并且不是null。
深入浅出Presto:大数据查询引擎的原理与应用
【4月更文挑战第7天】Presto是高性能的分布式SQL查询引擎,专为大规模数据交互式分析设计。它采用分离式架构,内存计算和动态规划优化查询,支持跨源查询、交互式查询和ANSI SQL兼容性。应用于大数据分析、实时数据湖查询和云原生部署。Presto的灵活性和效率使其在大数据处理领域备受推崇,适合分析师、数据科学家和IT架构师使用。未来将在博客中分享更多实践和案例。
来了,永久免费的图床服务
Markdown爱好者推荐PicGo软件搭配免费图床服务SMMS,解决在Markdown中插入图片的困扰。PicGo支持多种图床,如腾讯云、阿里云和免费的SMMS,提供拖拽上传、压缩图片功能。通过VSCode或Typora配合PicGo插件,能实现图片自动上传并转换为Markdown格式。SMMS提供5GB免费存储,足够个人博客使用。
AI大模型运维开发探索第三篇:深入浅出运维智能体
大模型出现伊始,我们就在SREWorks开源社区征集相关的实验案例。玦离同学提供了面向大数据HDFS集群的智能体案例,非常好地完成了运维诊断的目标。于是基于这一系列的实验和探索。本文详细介绍智能体在运维诊断中的应用探索。
阿里云OpenSearch重磅推出LLM问答式搜索产品,助力企业高效构建对话式搜索服务
OpenSearch推出LLM智能问答版,面向行业搜索场景,提供企业专属问答搜索服务,基于内置的LLM大模型提供问答能力,一站式快速搭建问答搜索系统。
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
降本60% ,阿里云 EMR StarRocks 全新发布存算分离版本
阿里云 EMR Serverless StarRocks 现已推出全新存算分离版本,该版本不仅基于开源 StarRocks 进行了全面优化,实现了存储与计算解耦架构,还在性能、弹性伸缩以及多计算组隔离能力方面取得了显著进展。
数据治理:解锁数据资产潜力,驱动企业决策与业务增长的密钥
在当今这个数据驱动的时代,企业所拥有的数据资产已成为其核心竞争力的重要组成部分。然而,仅仅拥有海量数据并不足以确保成功,关键在于如何有效地管理和利用这些数据,以支持精准决策、优化运营流程并推动业务持续增长。这就是数据治理的重要性所在——它是一套系统性的方法和流程,旨在确保数据质量、安全性、可用性和合规性,从而让数据资产能够最大化地支持企业决策和业务增长。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。