前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。

 LLM的核心是通过对语言进行建模来生成自然语言输出或理解输入,两个重要的概念在其中发挥关键作用:TokenizerEmbedding。本篇文章将对这两个概念进行入门级介绍,并提供了针对前端的js示例代码,帮助读者理解它们的基本原理/作用和如何使用。

1. 什么是Tokenizer?

Tokenizer 是一种将自然语言文本转化为模型可以处理的数字表示的工具。自然语言是由词、子词或字符组成的,而模型无法直接处理这些符号,它们只能处理数字。因此,Tokenizer的主要任务就是将文本转换为一系列数字。

1.1 Tokenizer的工作原理

Tokenizer通过查表的方式,将每个单词、子词或者字符映射为一个唯一的整数ID。这些整数ID作为模型的输入,帮助模型将语言处理为结构化的形式。

以句子“我喜欢学习”为例,一个简单的Tokenizer可能将其分解为每个汉字,并为每个汉字分配一个唯一的整数ID,如下:

  • “我” -> 1
  • “喜欢” -> 2, 3
  • “学习” -> 4, 5

在实际应用中,很多语言模型使用更复杂的分词方式,如子词分割。子词分割允许模型将罕见词分割为多个子词单元,从而提升泛化能力。例如,常见的子词分割方法包括BPE(Byte Pair Encoding)WordPiece,这些方法可以将长词拆分为更小的、频率更高的子词,增强模型处理罕见词汇的能力。

1.2 Tokenizer的种类

  • 词级别(Word-level)Tokenizer:将每个词作为一个Token。适用于语言如英文等分隔明确的文本,但对于中文等无空格分隔的语言不太适合。
  • 子词级别(Subword-level)Tokenizer:基于统计方法,将文本分割为高频子词单元。BPE和WordPiece是常见的子词分割算法。
  • 字符级别(Character-level)Tokenizer:将每个字符视为一个Token。这种方法适用于字符构成较复杂的语言(如中文),但会导致较长的序列输入。

1.3 为什么需要Tokenizer?

  • 将文本转化为数字:语言模型需要处理的是数字而不是文本。Tokenizer将文本符号转换为数字ID,是进入模型的第一步。
  • 词汇管理:通过分词,Tokenizer建立了一个词汇表,其中每个词或子词都对应一个唯一的ID。这让模型可以在推理时迅速查找词的表示。
  • 提升模型的泛化能力:通过分词,特别是子词分词,模型能够处理罕见词和新词,因为它可以将新词拆解为更小的子词单元,避免出现完全未知的词。

1.4 Tokenizer 示例代码

       其实python相关的库比较多,这里就用一个0依赖的js库来测试,自己也可以子串匹配实现。

npm install @lenml/tokenizers

image.gif

import { fromPreTrained } from "@lenml/tokenizer-llama3";
const tokenizer = fromPreTrained();
const tokens = tokenizer.apply_chat_template(
  [
    {
      role: "system",
      content: "你是一个有趣的ai助手",
    },
    {
      role: "user",
      content: "好好,请问怎么去月球?",
    },
  ]
) as number[];
// 转化成token的数组
console.log(tokens);
const chat_content = tokenizer.decode(tokens);
// 还原了的数据
console.log(chat_content);

image.gif

2. 什么是Embedding?

Embedding 是将Tokenizer生成的整数ID转化为稠密的向量表示的过程。与Tokenizer将文本转换为离散的整数ID不同,Embedding生成的是连续的实数值向量,这些向量能够捕捉词之间的语义关系。

2.1 Embedding的工作原理

在Embedding阶段,语言模型通过查表的方式,将每个整数ID映射到一个高维向量空间中的向量。这个向量通常是一个固定维度的向量(例如,300维、512维或768维),用来表示单词或子词的语义特征。

例如,经过Tokenizer处理的文本“我喜欢学习”可能会生成整数ID序列 [1, 2, 3, 4, 5]。在Embedding阶段,这些ID会被转换为稠密向量表示,如:

  • “我” -> [0.25, -0.34, 0.15, ...]
  • “喜欢” -> [0.12, 0.57, -0.22, ...], [0.11, -0.09, 0.31, ...]
  • “学习” -> [0.33, -0.44, 0.19, ...], [0.09, 0.23, -0.41, ...]

这些向量并不是随机生成的,它们是在模型的训练过程中被学习得到的。Embedding向量的维度固定,但向量的数值根据模型对词语上下文的理解不断更新和优化,最终形成一个语义丰富的向量表示。

2.2 Embedding的种类

  • 词向量(Word Embedding):如Word2Vec、GloVe等方法,通过静态词向量将词语映射到向量空间中。这些方法的Embedding是静态的,即同一个词在不同上下文中具有相同的向量。
  • 上下文相关的Embedding:如BERT、GPT等方法生成的Embedding,是基于上下文的动态向量。同一个词在不同的上下文中可能有不同的向量表示,从而更加精准地捕捉语言中的多义性和语境变化。

2.3 为什么需要Embedding?

  • 捕捉词之间的语义关系:通过Embedding,模型可以将语义相似的词表示为相近的向量。例如,“猫”和“狗”的向量在空间中可能非常接近,而“猫”和“车”的向量则会相距较远。
  • 连续性表示:与离散的整数ID不同,Embedding向量是连续的。这使得模型能够更好地进行计算和优化,因为连续的数值表示可以更容易进行梯度计算和模型学习。
  • 语义压缩:Embedding将高维的语言信息压缩到一个固定的向量空间中,这样模型就可以高效地处理输入并捕捉到其中的重要语义特征。

2.4 使用 TensorFlow.js实现一个嵌入层

接下来,我们用 TensorFlow.js 来实现一个简单的Embedding层。

首先安装 TensorFlow.js:

npm install @tensorflow/tfjs

image.gif

然后我们创建一个简单的Embedding层,将Token IDs转换为对应的Embedding向量。

const tf = require('@tensorflow/tfjs');
// 假设词汇表大小为10000,嵌入维度为300
const vocabSize = 10000;
const embeddingDim = 300;
// 创建一个Embedding层
const embeddingLayer = tf.layers.embedding({inputDim: vocabSize, outputDim: embeddingDim});
// 输入是之前Tokenizer的Token IDs
const tokenIds = tf.tensor([[1045, 2293, 4083]]);  // Batch size为1,三个Token
// 使用Embedding层将Token IDs转化为Embedding向量
const embeddings = embeddingLayer.apply(tokenIds);
embeddings.print();  // 输出Embedding结果

image.gif

在这个示例中,我们定义了一个词汇表大小为10000、嵌入维度为300的Embedding层。tokenIds代表之前从Tokenizer生成的Token ID序列,经过Embedding层后,生成对应的300维度的稠密向量。

注意下tfjs在浏览器和nodejs的时候不同的backend性能和表现有点差异,但基本可用,详细接口参考TensorFlow.js API

另外有时候进行向量化比较吃资源,或者需要处理大量文本和超高向量时,可使用各个AI平台提供的接口,一般叫做嵌入/向量化/句向量等

3. Tokenizer和Embedding的关系

在LLM中,TokenizerEmbedding是文本处理的两个连续步骤:

  1. Tokenizer负责将文本分割为Token,并将这些Token映射为离散的整数ID。
  2. Embedding则将这些整数ID进一步转化为稠密的向量表示,以便模型能够进行深度学习和优化。

它们的关系可以简单总结为:Tokenizer将语言中的离散符号表示成模型可以识别的离散ID,而Embedding则将这些离散ID转化为连续的向量,以便捕捉词之间的语义关系。

4. 总结

在大规模语言模型(LLM)中,TokenizerEmbedding是两个基础且关键的步骤。Tokenizer通过分词和映射,将文本转化为模型可以处理的数字序列。而Embedding则将这些数字序列进一步转化为语义丰富的向量表示。这两个步骤共同构成了LLM处理自然语言输入的基础,为模型的语义理解和生成提供了强大的支持。

对于初学者来说,理解Tokenizer和Embedding的作用及其背后的原理,将为深入学习LLM及其应用打下坚实的基础。

看了这么多,作为前端的你,还不赶紧npm install一下然后测试测试? ps: tfjs有cdn版本,简单测试可以直接用url引入,可能比安装更简单就是要等待


相关文章
|
2月前
|
机器学习/深度学习 安全 大数据
揭秘!企业级大模型如何安全高效私有化部署?全面解析最佳实践,助你打造智能业务新引擎!
【10月更文挑战第24天】本文详细探讨了企业级大模型私有化部署的最佳实践,涵盖数据隐私与安全、定制化配置、部署流程、性能优化及安全措施。通过私有化部署,企业能够完全控制数据,确保敏感信息的安全,同时根据自身需求进行优化,提升计算性能和处理效率。示例代码展示了如何利用Python和TensorFlow进行文本分类任务的模型训练。
153 6
|
17天前
|
存储 缓存 人工智能
深度解析CPFS 在 LLM 场景下的高性能存储技术
本文深入探讨了CPFS在大语言模型(LLM)训练中的端到端性能优化策略,涵盖计算端缓存加速、智能网卡加速、数据并行访问及数据流优化等方面。重点分析了大模型对存储系统的挑战,包括计算规模扩大、算力多样性及数据集增长带来的压力。通过分布式P2P读缓存、IO加速、高性能存算通路技术以及智能数据管理等手段,显著提升了存储系统的吞吐量和响应速度,有效提高了GPU利用率,降低了延迟,从而加速了大模型的训练进程。总结了CPFS在AI训练场景中的创新与优化实践,为未来大模型发展提供了有力支持。
|
2天前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
8 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深挖大模型幻觉!哈佛大学最新报告:LLM等价于众包,只是在输出网络共识
大型语言模型(LLM)如ChatGPT正改变人机交互,但在生成看似真实的错误信息方面存在“幻觉”问题。这种现象源于LLM依赖统计概率而非语义理解,导致在处理争议或冷门话题时易出错。研究显示,LLM的准确性高度依赖于训练数据的质量和数量。尽管如此,LLM仍具巨大潜力,需持续优化并保持批判性使用。
61 12
|
2月前
|
人工智能 自然语言处理
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
52 11
|
2月前
|
机器学习/深度学习 编解码 前端开发
探索无界:前端开发中的响应式设计深度解析####
【10月更文挑战第29天】 在当今数字化时代,用户体验的优化已成为网站与应用成功的关键。本文旨在深入探讨响应式设计的核心理念、技术实现及最佳实践,揭示其如何颠覆传统布局限制,实现跨设备无缝对接,从而提升用户满意度和访问量。通过剖析响应式设计的精髓,我们将一同见证其在现代Web开发中的重要地位与未来趋势。 ####
58 7
|
2月前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
212 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
103 2
|
2月前
|
编解码 前端开发 UED
探索无界:前端开发中的响应式设计深度解析与实践####
【10月更文挑战第29天】 本文深入探讨了响应式设计的核心理念,即通过灵活的布局、媒体查询及弹性图片等技术手段,使网站能够在不同设备上提供一致且优质的用户体验。不同于传统摘要概述,本文将以一次具体项目实践为引,逐步剖析响应式设计的关键技术点,分享实战经验与避坑指南,旨在为前端开发者提供一套实用的响应式设计方法论。 ####
77 4
|
2月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
91 2

推荐镜像

更多