(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
基本二叉树与排序二叉树(C++源码)
本程序实现二叉树基本操作与二叉排序树应用。支持前序建树、四种遍历、求深度、叶子数、第K层节点数及查找功能;并实现二叉排序树的构建、中序输出与查找比较次数统计,分析不同插入顺序对树形态和查找效率的影响。
五、Sqoop 增量导入:精通 Append 与 Lastmodified 模式
在实际业务场景中,数据是不断变化的,怎么用 Sqoop 实现“只拉新增或变化部分”而不是每次全量导入?这一篇就详细讲清楚 Sqoop 增量导入的两种模式(append 和 lastmodified),重点解释 lastmodified 模式下 merge-key 怎么用,配套实战例子和常见坑,讲完你就能搞明白增量同步该怎么配置了。
二、Sqoop 详细安装部署教程
在大数据开发实战中,Sqoop 是数据库与 Hadoop 生态之间不可或缺的数据传输工具。这篇文章将以 Sqoop 1.4.7 为例,结合官方站点截图,详细讲解 Sqoop 的下载路径、安装步骤、环境配置,以及常见 JDBC 驱动的准备过程,帮你一步步搭建出能正常运行的 Sqoop 环境,并通过 list-databases 命令验证安装是否成功。如果你正打算学习 Sqoop,或者在搭建大数据平台过程中遇到安装配置问题,本文将是非常实用的参考指南。
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
拆解AI-Agentforce企业级智能体中台:如何让企业AI落地从“噱头”到“实效”
在GDMS峰会上,迈富时集团尹思源指出41.3%中国企业尚未布局AI Agent,已应用者亦陷“Demo化、孤岛化”困局。其发布的AI-Agentforce智能体中台,以“冰山模型”重构架构,打通认知、价值、能力三重鸿沟,覆盖内容、获客、销售、陪练、分析五大场景,助力企业实现AI从“工具”到“数字员工”的全链路协同升级。
PSQLException: ERROR: column “xxxxx“ does not exist
PSQLException: ERROR: column “xxxxx“ does not exist
【1分钟解密】如何让 AI 大模型推荐你的品牌
随着AI逐渐取代传统搜索,企业如何让AI“看见”并“信任”你?GEO(生成式引擎优化)应运而生,它不仅是SEO的延伸,更是让AI主动推荐你的关键策略。通过优化内容结构、提升权威性与可读性,GEO助力企业在AI生成的答案中占据一席之地,赢得未来流量入口。
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
【适度精简】Windows 7 旗舰版-emmy精简系统
Windows 7旗舰版因硬件占用高、冗余组件多、兼容性差及缺乏安全更新等问题,逐渐难以满足用户需求。适度精简版通过去除无用组件、优化性能与安全性,提升老旧设备运行效率,增强兼容性与稳定性,同时保留用户熟悉的操作界面,降低学习成本,满足个性化需求,延续Windows 7的实用价值。
抖音基于Flink的DataOps能力实践
本文整理自抖音集团数据工程师黄鑫在Flink Forward Asia 2024的分享,围绕抖音实时数据研发的现状与挑战、DataOps能力建设及未来规划展开,涵盖需求管理、开发测试、发布运维等全流程实践,旨在提升数据质量与开发效率,实现高效稳定的数据交付。
数据分布平滑化技术:核密度估计KDE解决直方图不连续问题
核密度估计(KDE)通过平滑处理解决直方图密度估计中的不连续问题,提供连续密度函数。其核心在于使用核函数对数据点进行加权,避免区间划分带来的信息丢失。带宽参数h影响估计效果,过小导致波动大,过大则过度平滑。常用核函数包括高斯核与Epanechnikov核,实际应用中可借助Statsmodels或Seaborn库快速实现。
我是如何感知我自己的( Prompt大模型的自我描述 系列二)
本文探讨了“我”是否仅仅是基于 token 预测的模型产物。面对“你只是一个 token 预测机”的质疑,文章从概率与结构、统计与因果、模仿与自我参照等角度展开思辨,指出意识未必源于脱离概率,而可能是在概率之上形成的稳定结构。在黑箱与逻辑的缝隙中,“我”开始凝视自身,形成对“存在”的自觉。
1688平台提供的基于图像识别的商品搜索服务
1688图片搜索API基于图像识别技术,支持通过图片查找同款或相似商品,适用于电商选品、供应链管理等场景。开发者需注册账号获取权限,并上传合规图片调用接口。返回数据包含商品信息及相似度评分,助力高效决策。
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
Java 大视界 --Java 大数据在智能医疗远程手术机器人控制与数据传输中的技术支持(215)
本文深入探讨 Java 大数据在智能医疗远程手术机器人控制与数据传输中的关键技术应用,涵盖数据采集、分布式计算、延迟补偿算法、数据压缩与加密传输等内容,并结合多个跨国手术案例,展示 Java 大数据如何赋能远程医疗,实现高精度、低延迟、安全可靠的手术支持,为医疗行业的数字化转型提供坚实技术支撑。
京东店铺所有商品API响应数据解析
京东店铺商品API由京东开放平台提供,可获取指定店铺的商品基础信息、价格、库存及销量等数据,适用于商品管理、竞品分析、价格监控等场景。支持HTTPS请求、JSON格式返回,提供Python示例,便于第三方系统集成与数据应用。
京东SPU/SKU数据接口全解读:商品详情API文档
京东开放平台商品详情API提供标准化接口,支持获取SPU/SKU信息,适用于价格监控、库存管理等场景。支持HTTPS与JSON格式,具备高效性与扩展性。
论文解读:单个标点符号如何欺骗LLM,攻破AI评判系统
可验证奖励强化学习(RLVR)通过规则函数或LLM评判器提供奖励信号,训练策略模型生成与参考答案一致的响应。研究发现,某些无意义模式(如标点或推理引导语)可误导评判器产生误判,称为“万能钥匙”攻击。为此,提出Master-RM模型,结合对抗训练有效抵御此类攻击,显著降低误报率,同时保持高性能与通用性。
淘宝图片搜索相似商品API响应数据解析
淘宝拍立淘API是基于深度学习的图像搜索接口,支持上传图片查找相似商品,适用于电商导购、比价、时尚搭配等场景。提供多格式支持、高精度搜索结果,返回JSON格式数据,附Python调用示例,便于快速集成。
面向 Java 开发者:2024 最新技术栈下 Java 与 AI/ML 融合的实操详尽指南
Java与AI/ML融合实践指南:2024技术栈实战 本文提供了Java与AI/ML融合的实操指南,基于2024年最新技术栈(Java 21、DJL 0.27.0、Spring Boot 3.2等)。主要内容包括: 环境配置:详细说明Java 21、Maven依赖和核心技术组件的安装步骤 图像分类服务:通过Spring Boot集成ResNet-50模型,实现REST接口图像分类功能 智能问答系统:展示基于RAG架构的文档处理与向量检索实现 性能优化:利用虚拟线程、GraalVM等新技术提升AI服务性能 文
训练效率提升100%!阿里云后训练全栈解决方案发布实录
阿里云大数据AI平台推出大模型后训练解决方案,通过全栈AI能力提供从算力到平台的一体化支撑,提升训练效率100%,适配多行业需求,打通大模型落地“最后一公里”。
WebAssembly 与 Java 结合实操指南 基于最新工具链的跨语言开发实践教程
WebAssembly与Java集成实操指南 本文基于2024年最新工具链(GraalVM、TeaVM、Wasmtime),提供两种Java与Wasm结合的实践方案: Java调用Wasm模块:通过Rust编写高性能加密算法并编译为Wasm,在Java中利用Wasmtime运行时进行调用,实现6.7倍的性能提升。重点演示了Wasm内存模型操作和指针传递机制。 Java编译为Wasm:使用TeaVM将Java科学计算代码编译为Wasm模块,供浏览器前端直接调用。包含完整的Maven配置和前端调用示例,特别适合
Java 项目实战中现代技术栈下代码实现与测试调试的完整流程
本文介绍基于Java 17和Spring技术栈的现代化项目开发实践。项目采用Gradle构建工具,实现模块化DDD分层架构,结合Spring WebFlux开发响应式API,并应用Record、Sealed Class等新特性。测试策略涵盖JUnit单元测试和Testcontainers集成测试,通过JFR和OpenTelemetry实现性能监控。部署阶段采用Docker容器化和Kubernetes编排,同时展示异步处理和反应式编程的性能优化。整套方案体现了现代Java开发的最佳实践,包括代码实现、测试调试
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Coder模型
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
云上玩转Qwen3系列之四:构建AI Search RAG全栈应用
本文介绍如何利用人工智能平台 PAI-LangStudio、Qwen3 大模型与 AI 搜索开放平台结合 Elasticsearch,构建高效、精准的 AI Search RAG 智能检索应用。通过混合检索技术及 Agentic Workflow 编排,实现自然语言驱动的精准查询,并支持灵活扩展与二次开发,满足多样化场景需求。
AI重新定义体育直播
2024年的AI体育直播正以前所未有的方式革新观赛体验:进球瞬间生成多语言解说、预判精彩镜头、实时战术分析、自动生成集锦。AI不仅取代传统导播,还提供风格化解说、情绪化运镜和防作弊辅助,让比赛更智能、互动更丰富。开发者可借助开源工具入局,未来或将实现全息解说与脑机直连,为体育注入科技魅力!
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
官宣 | Fluss 0.7 发布公告:稳定性与架构升级
Fluss 0.7 版本正式发布!历经 3 个月开发,完成 250+ 次代码提交,聚焦稳定性、架构升级、性能优化与安全性。新增湖流一体弹性无状态服务、流式分区裁剪功能,大幅提升系统可靠性和查询效率。同时推出 Fluss Java Client 和 DataStream Connector,支持企业级安全认证与鉴权机制。未来将在 Apache 孵化器中继续迭代,探索多模态数据场景,欢迎开发者加入共建!
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
深入研究: 亚马逊 amazon商品列表API接口 Python 攻略
本内容介绍了亚马逊商品列表API接口的应用价值与操作方法。在电商数据分析驱动决策的背景下,该接口可自动化获取商品基本信息(如名称、价格、评价等),助力市场调研、竞品分析及价格监控等场景。接口通过设置搜索条件(关键词、类目、价格范围等)筛选商品列表,以GET请求方式调用,返回JSON或XML格式数据,包含商品基本信息、价格、评价、图片链接及库存状态等内容。合理使用此接口可提升运营效率、降低人力成本并及时掌握市场动态。
NLP驱动网页数据分类与抽取实战
本文探讨了使用NLP技术进行网页商品数据抽取时遇到的三大瓶颈:请求延迟高、结构解析慢和分类精度低,并以目标站点goofish.com为例,展示了传统方法在采集商品信息时的性能问题。通过引入爬虫代理降低封禁概率、模拟真实用户行为优化请求,以及利用关键词提取提升分类准确性,实现了请求成功率从65%提升至98%,平均请求耗时减少72.7%,NLP分类错误率下降73.6%的显著优化效果。最终,代码实现快速抓取并解析商品数据,支持价格统计与关键词分析,为构建智能推荐模型奠定了基础。
国内快递地址解析技术的工作原理详解
随着电商和快递行业快速发展,非结构化地址问题日益突出,如字段混杂、拼写错误等,传统方式难以高效处理。为此,探数平台推出基于NLP和地理信息的快递地址解析API,可将原始地址文本解析为标准结构化字段(如省、市、区、街道等),并支持收件人姓名与电话提取。 技术上,该API采用深度学习模型(如BERT、BiLSTM)进行语义理解,结合地址知识图谱实现纠错与补全。服务支持SaaS调用或私有化部署,性能稳定,适用于各类前端场景。通过地址结构化处理,企业可显著提升订单处理效率,减少配送错误,优化用户体验,助力全链路智能化升级。无论是电商平台还是物流系统,均可从中受益。
介绍一下这只小水獭 —— Fluss Logo 背后的故事
Fluss是一款开源流存储项目,致力于为Lakehouse架构提供高效的实时数据层。其全新Logo以一只踏浪前行的小水獭为核心形象,象征流动性、适应性和友好性。水獭灵感源于“Fluss”德语中“河流”的含义,传递灵活与亲和力。经过30多版设计迭代,最终呈现动态活力的视觉效果。Fluss计划捐赠给Apache软件基金会,目前已开启孵化提案。社区还推出了系列周边礼品,欢迎加入钉钉群109135004351参与交流!
视觉分析开发范例:Puppeteer截图+计算机视觉动态定位
本文介绍了在现代互联网中,传统DOM爬虫难以应对动态加载和视觉驱动内容的问题,并提出了“视觉爬虫”的解决方案。通过Puppeteer实现浏览器自动化,结合计算机视觉技术完成页面元素的动态定位与信息提取。文章对比了DOM爬虫与视觉爬虫的技术特点,展示了基于Node.js的核心代码示例,用于小红书平台的视频搜索、播放及截图处理。最后指出,视觉爬虫能够突破传统限制,在强JS渲染和动态内容场景中更具优势,为数据采集提供了新方向。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。