2022年最强大数据面试宝典(全文50000字,建议收藏)(四)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 复习大数据面试题,看这一套就够了!

35. Spark Master 使用 Zookeeper 进行 HA,有哪些源数据保存到 Zookeeper 里面?


spark 通过这个参数 spark.deploy.zookeeper.dir 指定 master 元数据在 zookeeper 中保存的位置,包括 Worker,Driver 和 Application 以及 Executors。standby 节点要从 zk 中,获得元数据信息,恢复集群运行状态,才能对外继续提供服务,作业提交资源申请等,在恢复前是不能接受请求的。


注:Master 切换需要注意 2 点:


1、在 Master 切换的过程中,所有的已经在运行的程序皆正常运行! 因为 Spark Application 在运行前就已经通过 Cluster Manager 获得了计算资源,所以在运行时 Job 本身的 调度和处理和 Master 是没有任何关系。


2、在 Master 的切换过程中唯一的影响是不能提交新的 Job:一方面不能够提交新的应用程序给集群, 因为只有 Active Master 才能接受新的程序的提交请求;另外一方面,已经运行的程序中也不能够因 Action 操作触发新的 Job 的提交请求。


36. 如何实现Spark Streaming读取Flume中的数据?


可以这样说:


  • 前期经过技术调研,查看官网相关资料,发现sparkStreaming整合flume有2种模式,一种是拉模式,一种是推模式,然后在简单的聊聊这2种模式的特点,以及如何部署实现,需要做哪些事情,最后对比两种模式的特点,选择那种模式更好。


  • 推模式:Flume将数据Push推给Spark Streaming


  • 拉模式:Spark Streaming从flume 中Poll拉取数据


37. 在实际开发的时候是如何保证数据不丢失的?


可以这样说:


  • flume那边采用的channel是将数据落地到磁盘中,保证数据源端安全性(可以在补充一下,flume在这里的channel可以设置为memory内存中,提高数据接收处理的效率,但是由于数据在内存中,安全机制保证不了,故选择channel为磁盘存储。整个流程运行有一点的延迟性)


  • sparkStreaming通过拉模式整合的时候,使用了FlumeUtils这样一个类,该类是需要依赖一个额外的jar包(spark-streaming-flume_2.10)


  • 要想保证数据不丢失,数据的准确性,可以在构建StreamingConext的时候,利用StreamingContext.getOrCreate(checkpoint, creatingFunc: () => StreamingContext)来创建一个StreamingContext,使用StreamingContext.getOrCreate来创建StreamingContext对象,传入的第一个参数是checkpoint的存放目录,第二参数是生成StreamingContext对象的用户自定义函数。如果checkpoint的存放目录存在,则从这个目录中生成StreamingContext对象;如果不存在,才会调用第二个函数来生成新的StreamingContext对象。在creatingFunc函数中,除了生成一个新的StreamingContext操作,还需要完成各种操作,然后调用ssc.checkpoint(checkpointDirectory)来初始化checkpoint功能,最后再返回StreamingContext对象。


这样,在StreamingContext.getOrCreate之后,就可以直接调用start()函数来启动(或者是从中断点继续运行)流式应用了。如果有其他在启动或继续运行都要做的工作,可以在start()调用前执行。


38. RDD有哪些缺陷?


  1. 不支持细粒度的写和更新操作,Spark写数据是粗粒度的,所谓粗粒度,就是批量写入数据,目的是为了提高效率。但是Spark读数据是细粒度的,也就是说可以一条条的读。


  1. 不支持增量迭代计算,如果对Flink熟悉,可以说下Flink支持增量迭代计算。


Kafka



1. 为什么要使用 kafka?


  1. 缓冲和削峰:上游数据时有突发流量,下游可能扛不住,或者下游没有足够多的机器来保证冗余,kafka在中间可以起到一个缓冲的作用,把消息暂存在kafka中,下游服务就可以按照自己的节奏进行慢慢处理。


  1. 解耦和扩展性:项目开始的时候,并不能确定具体需求。消息队列可以作为一个接口层,解耦重要的业务流程。只需要遵守约定,针对数据编程即可获取扩展能力。


  1. 冗余:可以采用一对多的方式,一个生产者发布消息,可以被多个订阅topic的服务消费到,供多个毫无关联的业务使用。


  1. 健壮性:消息队列可以堆积请求,所以消费端业务即使短时间死掉,也不会影响主要业务的正常进行。


  1. 异步通信:很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。


2. Kafka消费过的消息如何再消费?


kafka消费消息的offset是定义在zookeeper中的, 如果想重复消费kafka的消息,可以在redis中自己记录offset的checkpoint点(n个),当想重复消费消息时,通过读取redis中的checkpoint点进行zookeeper的offset重设,这样就可以达到重复消费消息的目的了


3. kafka的数据是放在磁盘上还是内存上,为什么速度会快?


kafka使用的是磁盘存储。


速度快是因为:


  1. 顺序写入:因为硬盘是机械结构,每次读写都会寻址->写入,其中寻址是一个“机械动作”,它是耗时的。所以硬盘 “讨厌”随机I/O, 喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。


  1. Memory Mapped Files(内存映射文件):64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page来实现文件到物理内存的直接映射。完成映射之后你对物理内存的操作会被同步到硬盘上。


  1. Kafka高效文件存储设计: Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。通过索引信息可以快速定位 message和确定response的 大 小。通过index元数据全部映射到memory(内存映射文件), 可以避免segment file的IO磁盘操作。通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。



  1. Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中 小的offset命名。这样在查找指定offset的 Message的时候,用二分查找就可以定位到该Message在哪个段中。


  1. 为数据文件建 索引数据文件分段 使得可以在一个较小的数据文件中查找对应offset的Message 了,但是这依然需要顺序扫描才能找到对应offset的Message。 为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。


4. Kafka数据怎么保障不丢失?


分三个点说,一个是生产者端,一个消费者端,一个broker端。


  1. 生产者数据的不丢失


kafka的ack机制:在kafka发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到,其中状态有0,1,-1。


如果是同步模式:

ack设置为0,风险很大,一般不建议设置为0。即使设置为1,也会随着leader宕机丢失数据。所以如果要严格保证生产端数据不丢失,可设置为-1。


如果是异步模式:

也会考虑ack的状态,除此之外,异步模式下的有个buffer,通过buffer来进行控制数据的发送,有两个值来进行控制,时间阈值与消息的数量阈值,如果buffer满了数据还没有发送出去,有个选项是配置是否立即清空buffer。可以设置为-1,永久阻塞,也就数据不再生产。异步模式下,即使设置为-1。也可能因为程序员的不科学操作,操作数据丢失,比如kill -9,但这是特别的例外情况。


注:


ack=0:producer不等待broker同步完成的确认,继续发送下一条(批)信息。


ack=1(默认):producer要等待leader成功收到数据并得到确认,才发送下一条message。


ack=-1:producer得到follwer确认,才发送下一条数据。


  1. 消费者数据的不丢失


通过offset commit 来保证数据的不丢失,kafka自己记录了每次消费的offset数值,下次继续消费的时候,会接着上次的offset进行消费。


而offset的信息在kafka0.8版本之前保存在zookeeper中,在0.8版本之后保存到topic中,即使消费者在运行过程中挂掉了,再次启动的时候会找到offset的值,找到之前消费消息的位置,接着消费,由于 offset 的信息写入的时候并不是每条消息消费完成后都写入的,所以这种情况有可能会造成重复消费,但是不会丢失消息。


唯一例外的情况是,我们在程序中给原本做不同功能的两个consumer组设置 KafkaSpoutConfig.bulider.setGroupid的时候设置成了一样的groupid,这种情况会导致这两个组共享同一份数据,就会产生组A消费partition1,partition2中的消息,组B消费partition3的消息,这样每个组消费的消息都会丢失,都是不完整的。 为了保证每个组都独享一份消息数据,groupid一定不要重复才行。


  1. kafka集群中的broker的数据不丢失


每个broker中的partition我们一般都会设置有replication(副本)的个数,生产者写入的时候首先根据分发策略(有partition按partition,有key按key,都没有轮询)写入到leader中,follower(副本)再跟leader同步数据,这样有了备份,也可以保证消息数据的不丢失。


5. 采集数据为什么选择kafka?


采集层 主要可以使用Flume, Kafka等技术。


Flume:Flume 是管道流方式,提供了很多的默认实现,让用户通过参数部署,及扩展API.


Kafka:Kafka是一个可持久化的分布式的消息队列。 Kafka 是一个非常通用的系统。你可以有许多生产者和很多的消费者共享多个主题Topics。


相比之下,Flume是一个专用工具被设计为旨在往HDFS,HBase发送数据。它对HDFS有特殊的优化,并且集成了Hadoop的安全特性。


所以,Cloudera 建议如果数据被多个系统消费的话,使用kafka;如果数据被设计给Hadoop使用,使用Flume。


6. kafka 重启是否会导致数据丢失?


  1. kafka是将数据写到磁盘的,一般数据不会丢失。
  2. 但是在重启kafka过程中,如果有消费者消费消息,那么kafka如果来不及提交offset,可能会造成数据的不准确(丢失或者重复消费)。


7. kafka 宕机了如何解决?


  1. 先考虑业务是否受到影响

kafka 宕机了,首先我们考虑的问题应该是所提供的服务是否因为宕机的机器而受到影响,如果服务提供没问题,如果实现做好了集群的容灾机制,那么这块就不用担心了。


  1. 节点排错与恢复

想要恢复集群的节点,主要的步骤就是通过日志分析来查看节点宕机的原因,从而解决,重新恢复节点。


8. 为什么Kafka不支持读写分离?


在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。 Kafka 并不支持主写从读,因为主写从读有 2 个很明显的缺点:


  1. 数据一致性问题:数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。


  1. 延时问题:类似 Redis 这种组件,数据从写入主节点到同步至从节点中的过程需要经历 网络→主节点内存→网络→从节点内存 这几个阶段,整个过程会耗费一定的时间。而在 Kafka 中,主从同步会比 Redis 更加耗时,它需要经历 网络→主节点内存→主节点磁盘→网络→从节 点内存→从节点磁盘 这几个阶段。对延时敏感的应用而言,主写从读的功能并不太适用。


而kafka的主写主读的优点就很多了:

  1. 可以简化代码的实现逻辑,减少出错的可能;
  2. 将负载粒度细化均摊,与主写从读相比,不仅负载效能更好,而且对用户可控;
  3. 没有延时的影响;
  4. 在副本稳定的情况下,不会出现数据不一致的情况。


9. kafka数据分区和消费者的关系?


每个分区只能由同一个消费组内的一个消费者(consumer)来消费,可以由不同的消费组的消费者来消费,同组的消费者则起到并发的效果。


10. kafka的数据offset读取流程


  1. 连接ZK集群,从ZK中拿到对应topic的partition信息和partition的Leader的相关信息
  2. 连接到对应Leader对应的broker
  3. consumer将⾃自⼰己保存的offset发送给Leader
  4. Leader根据offset等信息定位到segment(索引⽂文件和⽇日志⽂文件)
  5. 根据索引⽂文件中的内容,定位到⽇日志⽂文件中该偏移量量对应的开始位置读取相应⻓长度的数据并返回给consumer


11. kafka内部如何保证顺序,结合外部组件如何保证消费者的顺序?


kafka只能保证partition内是有序的,但是partition间的有序是没办法的。爱奇艺的搜索架构,是从业务上把需要有序的打到同⼀个partition。


12. Kafka消息数据积压,Kafka消费能力不足怎么处理?


  1. 如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,并且同时提升消费组的消费者数量,消费者数=分区数。(两者缺一不可)


  1. 如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少(拉取数据/处理时间<生产速度),使处理的数据小于生产的数据,也会造成数据积压。


13. Kafka单条日志传输大小


kafka对于消息体的大小默认为单条最大值是1M但是在我们应用场景中, 常常会出现一条消息大于1M,如果不对kafka进行配置。则会出现生产者无法将消息推送到kafka或消费者无法去消费kafka里面的数据, 这时我们就要对kafka进行以下配置:server.properties


replica.fetch.max.bytes: 1048576  broker可复制的消息的最大字节数, 默认为1M
message.max.bytes: 1000012   kafka 会接收单个消息size的最大限制, 默认为1M左右


注意:message.max.bytes必须小于等于replica.fetch.max.bytes,否则就会导致replica之间数据同步失败。


Hbase



1. Hbase是怎么写数据的?


Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 触发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后(默认10G),触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer 上,使得原先1个Region的压力得以分流到2个Region上

由此过程可知,HBase只是增加数据,没有更新和删除操作,用户的更新和删除都是逻辑层面的,在物理层面,更新只是追加操作,删除只是标记操作。


用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。


2. HDFS和HBase各自使用场景


首先一点需要明白:Hbase是基于HDFS来存储的。


HDFS:

  1. 一次性写入,多次读取。
  2. 保证数据的一致性。
  3. 主要是可以部署在许多廉价机器中,通过多副本提高可靠性,提供了容错和恢复机制。


HBase:

  1. 瞬间写入量很大,数据库不好支撑或需要很高成本支撑的场景。
  2. 数据需要长久保存,且量会持久增长到比较大的场景。
  3. HBase不适用与有 join,多级索引,表关系复杂的数据模型。
  4. 大数据量(100s TB级数据)且有快速随机访问的需求。如:淘宝的交易历史记录。数据量巨大无容置疑,面向普通用户的请求必然要即时响应。
  5. 业务场景简单,不需要关系数据库中很多特性(例如交叉列、交叉表,事务,连接等等)。


3. Hbase的存储结构


Hbase 中的每张表都通过行键(rowkey)按照一定的范围被分割成多个子表(HRegion),默认一个HRegion 超过256M 就要被分割成两个,由HRegionServer管理,管理哪些 HRegion 由 Hmaster 分配。 HRegion 存取一个子表时,会创建一个 HRegion 对象,然后对表的每个列族(Column Family)创建一个 store 实例, 每个 store 都会有 0 个或多个 StoreFile 与之对应,每个 StoreFile 都会对应一个HFile,HFile 就是实际的存储文件,一个 HRegion 还拥有一个 MemStore实例。


4. 热点现象(数据倾斜)怎么产生的,以及解决方法有哪些


热点现象


某个小的时段内,对HBase的读写请求集中到极少数的Region上,导致这些region所在的RegionServer处理请求量骤增,负载量明显偏大,而其他的RgionServer明显空闲。


热点现象出现的原因


HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。


热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。


热点现象解决办法

为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。常见的方法有以下这些:


  1. 加盐:在rowkey的前面增加随机数,使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。


  1. 哈希:哈希可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据


  1. 反转:第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题


  1. 时间戳反转:一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如[key][reverse_timestamp],[key]的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
  • 比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计[userId反转] [Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]
  • 如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]


  1. HBase建表预分区:创建HBase表时,就预先根据可能的RowKey划分出多个region而不是默认的一个,从而可以将后续的读写操作负载均衡到不同的region上,避免热点现象。


5. HBase的 rowkey 设计原则


长度原则:100字节以内,8的倍数最好,可能的情况下越短越好。因为HFile是按照 keyvalue 存储的,过长的rowkey会影响存储效率;其次,过长的rowkey在memstore中较大,影响缓冲效果,降低检索效率。最后,操作系统大多为64位,8的倍数,充分利用操作系统的最佳性能。


散列原则:高位散列,低位时间字段。避免热点问题。


唯一原则:分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问 的数据放到一块。


6. HBase的列簇设计


原则:在合理范围内能尽量少的减少列簇就尽量减少列簇,因为列簇是共享region的,每个列簇数据相差太大导致查询效率低下。


最优:将所有相关性很强的 key-value 都放在同一个列簇下,这样既能做到查询效率最高,也能保持尽可能少的访问不同的磁盘文件。以用户信息为例,可以将必须的基本信息存放在一个列族,而一些附加的额外信息可以放在另一列族。


7. HBase 中 compact 用途是什么,什么时候触发,分为哪两种,有什么区别


在 hbase 中每当有 memstore 数据 flush 到磁盘之后,就形成一个 storefile,当 storeFile的数量达到一定程度后,就需要将 storefile 文件来进行 compaction 操作。


Compact 的作用:


  1. 合并文件
  2. 清除过期,多余版本的数据
  3. 提高读写数据的效率 4 HBase 中实现了两种 compaction 的方式:minor and major. 这两种 compaction 方式的 区别是:
  4. Minor 操作只用来做部分文件的合并操作以及包括 minVersion=0 并且设置 ttl 的过 期版本清理,不做任何删除数据、多版本数据的清理工作。
  5. Major 操作是对 Region 下的 HStore 下的所有 StoreFile 执行合并操作,最终的结果 是整理合并出一个文件。


Flink



1. 简单介绍一下Flink


Flink是一个面向流处理和批处理的分布式数据计算引擎,能够基于同一个Flink运行,可以提供流处理和批处理两种类型的功能。 在 Flink 的世界观中,一切都是由流组成的,离线数据是有界的流;实时数据是一个没有界限的流:这就是所谓的有界流和无界流。


2. Flink的运行必须依赖Hadoop组件吗


Flink可以完全独立于Hadoop,在不依赖Hadoop组件下运行。但是做为大数据的基础设施,Hadoop体系是任何大数据框架都绕不过去的。Flink可以集成众多Hadooop 组件,例如Yarn、Hbase、HDFS等等。例如,Flink可以和Yarn集成做资源调度,也可以读写HDFS,或者利用HDFS做检查点。


3. Flink集群运行时角色


Flink 运行时由两种类型的进程组成:一个 JobManager 和一个或者多个 TaskManager。



Client 不是运行时和程序执行的一部分,而是用于准备数据流并将其发送给 JobManager。之后,客户端可以断开连接(分离模式),或保持连接来接收进程报告(附加模式)。客户端可以作为触发执行 Java/Scala 程序的一部分运行,也可以在命令行进程 ./bin/flink run ... 中运行。


可以通过多种方式启动 JobManager 和 TaskManager:直接在机器上作为 standalone 集群启动、在容器中启动、或者通过YARN等资源框架管理并启动。TaskManager 连接到 JobManagers,宣布自己可用,并被分配工作。


JobManager:

JobManager 具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调 checkpoint、并且协调从失败中恢复等等。这个进程由三个不同的组件组成:


  • ResourceManager

ResourceManager 负责 Flink 集群中的资源提供、回收、分配,管理 task slots。

  • Dispatcher

Dispatcher 提供了一个 REST 接口,用来提交 Flink 应用程序执行,并为每个提交的作业启动一个新的 JobMaster。它还运行 Flink WebUI 用来提供作业执行信息。

  • JobMaster

JobMaster 负责管理单个JobGraph的执行。Flink 集群中可以同时运行多个作业,每个作业都有自己的 JobMaster。

TaskManagers

TaskManager(也称为 worker)执行作业流的 task,并且缓存和交换数据流。

必须始终至少有一个 TaskManager。在 TaskManager 中资源调度的最小单位是 task slot。TaskManager 中 task slot 的数量表示并发处理 task 的数量。请注意一个 task slot 中可以执行多个算子。


4. Flink相比Spark Streaming有什么区别


1. 架构模型

Spark Streaming 在运行时的主要角色包括:Master、Worker、Driver、Executor,Flink 在运行时主要包含:Jobmanager、Taskmanager 和 Slot。


2. 任务调度

Spark Streaming 连续不断的生成微小的数据批次,构建有向无环图 DAG,Spark Streaming 会依次创建 DStreamGraph、JobGenerator、JobScheduler。

Flink 根据用户提交的代码生成 StreamGraph,经过优化生成 JobGraph,然后提交给 JobManager 进行处理,JobManager 会根据 JobGraph 生成 ExecutionGraph,ExecutionGraph 是 Flink 调度最核心的数据结构,JobManager 根据 ExecutionGraph 对 Job 进行调度。


3. 时间机制

Spark Streaming 支持的时间机制有限,只支持处理时间。Flink 支持了流处理程序在时间上的三个定义:处理时间、事件时间、注入时间。同时也支持 watermark 机制来处理滞后数据。


4. 容错机制

对于 Spark Streaming 任务,我们可以设置 checkpoint,然后假如发生故障并重启,我们可以从上次 checkpoint 之处恢复,但是这个行为只能使得数据不丢失,可能会重复处理,不能做到恰一次处理语义。

Flink 则使用两阶段提交协议来解决这个问题。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
2月前
|
存储 缓存 关系型数据库
滴滴面试:单表可以存200亿数据吗?单表真的只能存2000W,为什么?
40岁老架构师尼恩在其读者交流群中分享了一系列关于InnoDB B+树索引的面试题及解答。这些问题包括B+树的高度、存储容量、千万级大表的优化、单表数据量限制等。尼恩详细解释了InnoDB的存储结构、B+树的磁盘文件格式、索引数据结构、磁盘I/O次数和耗时,以及Buffer Pool缓存机制对性能的影响。他还提供了实际操作步骤,帮助读者通过元数据找到B+树的高度。尼恩强调,通过系统化的学习和准备,可以大幅提升面试表现,实现“offer直提”。相关资料和PDF可在其公众号【技术自由圈】获取。
|
2月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
182 1
|
2月前
|
存储 关系型数据库 MySQL
面试官:MySQL一次到底插入多少条数据合适啊?
本文探讨了数据库插入操作的基础知识、批量插入的优势与挑战,以及如何确定合适的插入数据量。通过面试对话的形式,详细解析了单条插入与批量插入的区别,磁盘I/O、内存使用、事务大小和锁策略等关键因素。最后,结合MyBatis框架,提供了实际应用中的批量插入策略和优化建议。希望读者不仅能掌握技术细节,还能理解背后的原理,从而更好地优化数据库性能。
|
2月前
|
存储 大数据 数据库
Android经典面试题之Intent传递数据大小为什么限制是1M?
在 Android 中,使用 Intent 传递数据时存在约 1MB 的大小限制,这是由于 Binder 机制的事务缓冲区限制、Intent 的设计初衷以及内存消耗和性能问题所致。推荐使用文件存储、SharedPreferences、数据库存储或 ContentProvider 等方式传递大数据。
83 0
|
4月前
|
Java
【Java基础面试五】、 int类型的数据范围是多少?
这篇文章回答了Java中`int`类型数据的范围是-2^31到2^31-1,并提供了其他基本数据类型的内存占用和数值范围信息。
【Java基础面试五】、 int类型的数据范围是多少?
|
4月前
|
存储 JavaScript 前端开发
2022年前端js面试题
2022年前端js面试题
41 0
|
4月前
|
NoSQL Java 数据库
2022年整理最详细的java面试题、掌握这一套八股文、面试基础不成问题[吐血整理、纯手撸]
这篇文章是一份详尽的Java面试题总结,涵盖了从面向对象基础到分布式系统设计的多个知识点,适合用来准备Java技术面试。
2022年整理最详细的java面试题、掌握这一套八股文、面试基础不成问题[吐血整理、纯手撸]
|
4月前
|
存储 负载均衡 算法
[go 面试] 一致性哈希:数据分片与负载均衡的黄金法则
[go 面试] 一致性哈希:数据分片与负载均衡的黄金法则
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
28天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?