年度回顾 | 从九大国际AI顶会接收论文一窥ML算法趋势(上)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 本文节选自机器之心《2021-2022年度 AI科技发展趋势报告 · 研究篇》,详细数据及分析过程在完整报告中进行收录。报告将于2022年开春正式发布,点击阅读原文获得免费获取报告机会。

机器学习算法的演进是人工智能技术发展的核心要素。

在本文的上篇,我们尝试分别从机器学习算法、计算语言处理、计算机视觉及机器人分领域对ML算法发展趋势进行总结。在本文的下篇,我们尝试打破领域的边界,形成一份全局性的总结。本文仅选取分析结论部分,详细数据及分析过程将收录在《2021-2022年度 AI科技发展趋势报告》完整版中。


2021年机器学习四大顶会 AAAI、NeurIPS、ICML、IJCAI 接收论文综合分析观察

首先,在2021年主要的四个机器学习会议中,机器学习、计算机视觉、NLP仍然是投稿量和接收量最大的几个主题。对于从事机器学习、人工智能相关领域研究的研究人员来说,对于研究论文题目或摘要中涉及“Machine Learning”、“Computer Vision”、“NLP”等会格外关注。但从几个会议最终接收的论文来看,直接用这些命名的论文接收率并不高,可能因为名称过于宽泛,反而不能够突出论文工作的重点。
其次,引入随机方法、优化方法、博弈论、增强处理、蒸馏等技术的论文虽然总数不是特别多,但接收率在几大会议中普遍较高。这一方面说明,这几个技术是机器学习领域中的热门技术,越来越多的研究人员会在不同领域的机器学习方法中引入这些技术。另一方面也说明,这几项技术应用在机器学习领域中具有较好的效果,包括图像、视频、语音、对话生成、文本翻译等等。

第三,Transformer、图结构、强化学习仍然是机器学习方法中重点采用的技术,在几大会议的最终接收的论文中,应用这几项技术的论文数量都比较多。但是,与GAN直接相关的论文数量与前几年相比大大减少,这也说明GAN在机器学习中的应用进入了瓶颈期。

第四,应对标注的高质量数据较少的问题的 少样本/弱样本/零样本学习相关文章的数量与前几年相比变化不大,说明聚焦于这一方向的研究人员仍在推进相关工作,并在不同领域中应用获得了不错的效果。但这一类方法并没有根本性的改进,所以也没有实现论文数量方面的大的改变。

第五,在关于智能体的论文中,今年最终接收的文章都以multi-agent为主,与单agent的方法不同,multi-agent侧重于多个agent之间的规划调度问题,以及对智能体与智能体、智能体与环境之间的相互影响和作用(即适应性)的分析。

第六,在几个会议中都有关于可解释性、伦理、偏见等的论文,可以看出,越来越多的研究人员开始关注这一类AI引发的社会问题。此外,越来越多的研究人员开始关注机器学习模型的可解释性问题,从简单的提高识别率、准确率逐渐提升到关注模型有效性背后真实原因的阶段。经历了努力利用黑盒机器学习模型改进不同领域中应用效果的阶段, 现在的机器学习发展到了深入理解白盒模型机理的阶段。


计算语言处理会议(ACL)接受论文分析观察

首先,从ACL 2021年会议论文和近年来计算语言处理领域的研究论文可以看出,与其它AI相关的研究领域相比,计算语言处理领域中已有很多技术/算法/模型应用在实际场景中,所以与前几年追求准确率相比,近年来的论文更多关注模型的可解释性、泛化性以及社会性问题,同时也有越来越多的研究人员关注由此产生的伦理问题、垄断问题。

其次,word embedding仍然是各类NLP文章中最关注的技术和方法,说明这一技术在计算语言处理领域中适用性、有效性仍然是最优的。

第三,在计算语言处理领域中迁移能力仍然不乐观。计算语言处理领域中所谓的in-domain如何界定?目前英语的各类NLP模型直接迁移应用到其它语言中效果不佳。

第四,预训练语言模型在ACL 2021 的文章中几乎呈现了压倒性的优势,包括BERT、RoBERTa、BART、GPT-2等。这是计算语言处理会议与其它顶会最大的不同。预训练可能是其它领域中某些情况下可选的技术方案,但是却是计算语言处理领域中的绝对最优技术方案之一。不管是字节跳动还是百度,在ACL 2021上都公布了成绩非常出色的预训练语言模型。

第五,ACL 2021上共有57个国家投稿,其中投稿数前二国家是中国(37.6%)和美国(25.1%),其中中国投稿量是美国的1.5倍之多。这也说明中国的计算语言处理技术处于领先的地位,而国内专注于此领域的研究人员也较多。

image.png


计算机视觉(CVPR、ICCV)接受论文分析观察


首先,在计算机视觉领域,传统的图像和视频理解、目标检测等仍然是研究的热门。以2D/3D目标检测为例,监督/半监督方法、少样本学习等方法都有所应用。在两个主要会议中,这几个经典领域中论文的研究主要从不同的应用场景中面临的不同问题、改进方法/模型以及构建更加鲁棒的数据库这些角度入手。

第二,与NLP领域中预训练模型带来的巨大改进不同,计算机视觉领域中虽然也在不断提出和应用算法/模型,但最终性能的改进主要是归因于数据集的持续升级。纵观顶会的相关论文,没有哪一种技术、算法能够在某一个计算机视觉领域中获得压倒性的优势。更多的优势方法得益于算力/数据的优势。

第三,深度神经网络、卷积网络带来了计算机视觉领域基础任务的性能突破,GAN 的提出进一步带来了分类和鉴别的性能突破。在2021年会议论文中,神经网络架构改进(包括Transformer和GNN)、GAN的应用等仍是主要的方向。

第四,在计算机视觉领域中,关于可解释性、公平、透明、伦理等问题的文章数量也不少,说明计算机视觉领域的研究人员也开始关注这一问题。

第五,由于计算机视觉任务极易受到对抗样本的影响,与NLP等应用领域相比,在计算机视觉领域中关于对抗学习的论文数量也较多。

最后,在两个计算机视觉顶会中,都有大量关注于数据库构建的文章。在一些专门的应用领域,例如3D城市点云、游戏场景、恶意攻击场景等,计算机视觉方法的适用性还依赖于专门的标注数据库的构建。


机器人(ICRA、CoRL)接受论文分析观察


首先,2021年机器人领域的顶会中大量论文都聚焦于无模型强化学习框架,令智能体与环境进行实时交互,以实现收敛得到最优解。这表明,越来越多的研究人员考虑使用无模型框架替代传统的使用拟合模型的经典强化学习方法。

第二,CoRL中感知领域的方法成为研究热点,感知领域的方法则是认知科学、神经科学等学科在机器人领域中的应用,其根本目的是令智能体像人一样能够通过各种视觉、触觉的经验学习。ICRA中的感知相关论文数量也远超强化学习等主题,成为了算法/方法类关注度最高的主题。

第三,与其它顶会不同,机器人领域的顶会更多的关注机器人在实际应用场景中的性能,如野外机器人、医学相关机器人、服务机器人等,而在相关会议中的Demo更多的代表了机器人领域中的研究趋势,例如大量采用无模型框架、引入感知技术等等。



相关文章
|
19天前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
|
24天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
4天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
18 6
【AI系统】QNNPack 算法
|
4天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
17 5
【AI系统】Im2Col 算法
|
4天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
13 2
【AI系统】Winograd 算法
|
20天前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
8天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
28 3
|
8天前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
24 1
|
24天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
2月前
|
自然语言处理 算法 安全
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-16
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-16
21 0
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-16