Jeff Dean:谷歌将重点转向构建通用智能AI系统

简介: 谷歌AI负责人Jeff Dean近日接受《连线》专访,透露谷歌正在尝试构建具有通用智能、而非高度专业化智能的系统。尽管更大规模的计算系统,尤其是为机器学习量身定做的系统仍然有很大的潜力,但谷歌正在试图用更少的数据和更少的计算力来做机器学习。

微信图片_20220107180813.jpg


无论计算机将在未来社会中扮演何种角色,Jeff Dean都将对其结果产生重大影响。作为谷歌庞大的人工智能研究团队的领导者,他的工作涉及方方面面,从自动驾驶汽车到家用机器人,再到谷歌强大的在线广告业务,无所不包。


《连线》(Wired)杂志近日在AI顶会NeurIPS上与Jeff Dean讨论了他的团队的最新探索,以及谷歌如何试图对其设置道德限制。


微信图片_20220107180815.jpg


Jeff Dean


Jeff Dean:谷歌正在用更少的数据、更少的计算做机器学习


《连线》:你做了一个关于构建新型计算机以推动机器学习发展的研究报告。Google正在测试哪些新想法呢?


Jeff Dean:一个是将机器学习用于芯片上电路的布线。设计芯片时,在设计了一堆新电路后,你必须以一种高效的方式将电路放在芯片上,以优化面积、功率使用和其他许多参数。通常,人类专家需要花数周的时间完成这一任务。


我们可以让一个机器学习模型去学习芯片布线这个游戏,而且效果非常好。AI可以得到与人类专家相当甚至更好的结果。我们一直在使用谷歌内部的不同芯片做这件事情,比如TPU(Google研发的自定义机器学习芯片)。


《连线》:更强大的芯片是AI最近取得进展的关键。但Facebook的AI主管最近表示,这种策略很快就会陷入困境。本周,Google的一位顶级研究人员也敦促在该领域探索新的想法。


Jeff Dean:构建更高效、更大规模的计算系统,尤其是为机器学习量身定做的系统,仍然有很大的潜力。我认为在过去的五六年里所做的基础研究仍然有很大的应用空间。我们将与谷歌产品的同事合作,将这些研究投入实际应用。


但我们也在考虑,基于我们今天能做什么和不能做什么,未来可能要面对的主要问题是什么。我们想构建一个可以泛化到新任务的系统。用更少的数据和更少的计算做事情,将会变得十分有趣而且重要。


《连线》:在NeurIPS受到关注的另一个挑战是,一些AI应用程序提出了伦理问题。一年多前,在五角大楼的一项名为Maven的AI项目遭到抗议后,谷歌宣布了AI研究的七大原则。自那以后,谷歌的AI研究工作发生了怎样的变化?


Jeff Dean:我认为Google的所有人对如何将这些原则付诸实施都有了更好的理解。我们有一个流程,通过这个流程,考虑以某种方式使用机器学习的产品团队可以在设计整个系统之前获得早期的意见,比如,你应该如何收集数据,以确保数据没有偏见。


当然了,我们还在继续推动在研究方向中体现这些原则。我们在关于偏见、公平、隐私和机器学习方面做了很多工作。


《连线》:这些原则排除了武器方面的工作,禁止将人工智能技术应用在武器上,但允许与政府和军方开展业务合作,包括国防项目。自Maven项目以来,谷歌有没有启动过新的军事项目?


Jeff Dean:我们很乐意以符合我们的原则的方式与军方或其他政府机构合作。因此,比如说我们想帮助提高海岸警卫队人员的安全,那是我们乐意做的事情。云计算团队更多参与其中,因为这确实是他们的业务范围。


《连线》:穆斯塔法·苏莱曼(Mustafa Suleyman)是DeepMind的联合创始人,DeepMind是谷歌母公司Alphabet的一部分,也是机器学习研究的主要参与者之一。苏莱曼最近跳槽到了谷歌。他说他将与你,以及谷歌的最高法律和政策执行官Kent Walker一起工作。你们将与苏莱曼一起做什么?


Jeff Dean:苏莱曼在AI政策相关问题上有着广阔的视野。他也参与了谷歌AI原则的制定和审查过程,所以我认为他将把大部分时间集中在AI伦理和政策相关的工作上。我真心希望苏莱曼自己评论一下他将具体做什么。


Kent的团队正在研究的一个领域是,应该如何完善人工智能原则,以便为那些正在考虑在谷歌产品中使用诸如面部识别等AI技术的团队提供更多指导。


《连线》:你这周做了一个关于机器学习如何帮助社会应对气候变化的主题演讲。在这方面机器学习有哪些机会?机器学习项目本身有时会耗费大量能量,这又该如何解释呢?


Jeff Dean:有很多机会可以将机器学习应用到这个问题上。我的同事John Platt是最近一篇探讨这一问题的论文的20多位作者之一,这篇论文有100多页长。例如,机器学习可以帮助提高交通运输的效率,或者使气候模型更加精确,因为传统的模型计算量非常大,限制了空间分辨率。


我主要关注的是碳排放与机器学习。我见过的一些关于机器学习能源使用的论文并没有考虑能源的来源。在Google数据中心,我们满足全年所有计算需求的能源使用都是100%可再生的。


《连线》:除了气候变化之外,你们团队明年还会拓展哪些研究领域?


Jeff Dean:一个是多模式学习:这类任务有不同类型的模式,比如视频和文本或视频和音频。我们的AI研究社区在这方面做的还不够多,这个领域未来可能会变得更加重要。


机器学习在医疗领域的研究也是我们做了大量工作的领域。另一项是使设备上的机器学习模型更好,这样我们就可以把更多有趣的功能加入到智能手机和其他设备中。


参考链接:


https://www.wired.com/story/googles-ai-chief-do-more-less-data/

相关文章
|
2月前
|
人工智能 自然语言处理 算法
【2025云栖大会】AI 搜索智能探索:揭秘如何让搜索“有大脑”
2025云栖大会上,阿里云高级技术专家徐光伟在云栖大会揭秘 Agentic Search 技术,涵盖低维向量模型、多模态检索、NL2SQL及DeepSearch/Research智能体系统。未来,“AI搜索已从‘信息匹配’迈向‘智能决策’,阿里云将持续通过技术创新与产品化能力,为企业构建下一代智能信息获取系统。”
417 9
|
2月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
763 6
|
2月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
2月前
|
存储 机器学习/深度学习 人工智能
构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
562 5
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
583 42
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
469 30
|
3月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
944 48
|
2月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
419 1