【实验】阿里云大数据助理工程师认证(ACA)- QuickBI数据分析(上)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【实验】阿里云大数据助理工程师认证(ACA)- QuickBI数据分析

实验概述

Quick BI是专为云上用户量身打造的新一代智能BI服务平台。Quick BI提供海量数据实时在线分析,拖拽式操作、丰富的可视化效果,帮助您轻松自如地完成数据分析、业务数据探查。它不止是业务人员“看”数据的工具,更是数据化运营的助推器,Data Intelligence is more than Business Intelligence,实现人人都是数据分析师。通过实验学生能掌握Quick BI的使用方法。


实验目的

本实验要求学生掌握大数据可视化从分析到实现的基本流程,利用阿里云提供的可视化工具Quick BI进行初步尝试,快速生成可视化BI报表,使用Quick BI工具对数据进行初步的分析。


实验架构


阿里云Quick BI可视化工具


第 1 章:实验背景


1.1 maxcompute


请点击页面左侧的 ,在左侧栏中,查看本次实验资源信息。

maxcomputemaxcompute MAXCOMPUTE

在弹出的左侧栏中,点击 创建资源 按钮,开始创建实验资源。

资源创建过程需要1-3分钟。完成实验资源的创建后,用户可以通过 实验资源 查看实验中所需的资源信息,例如:阿里云账号等。


1.2 实验概述


Quick BI是专为云上用户量身打造的新一代智能BI服务平台。Quick BI提供海量数据实时在线分析,拖拽式操作、丰富的可视化效果,帮助您轻松自如地完成数据分析、业务数据探查。它不止是业务人员“看”数据的工具,更是数据化运营的助推器,Data Intelligence is more than Business Intelligence,实现人人都是数据分析师。通过实验学生能掌握Quick BI的使用方法。


1.5 实验准备


本实验需要使用阿里云的Quick BI资源,具体步骤如下:


【注】本实验均在Google Chrome浏览器下测试运行,为了达到最大兼容,推荐使用Windows7以上的操作系统以及Chrome浏览器进行实验。


【注】一旦开始创建资源,该实验就开始计时,并在到达实验规定的时长时,将自动结束实验并清除资源。


进入实验后会出现如下界面,首先点击实验手册,然后点击附件下载,将附件下载到本地
下载完成之后点击实验资源,然后点击创建实验资源按钮,如下图所示
等待创建完成。创建完成后出现如下界面,点击复制控制台url的链接,然后使用浏览器的隐


第 2 章:实验详情


2.1 添加数据源


  1. 首先点击工作空间,然后点击数据源,最后点击上传文件

20200711141454726.png

阿里云Quick BI支持很多种数据来源,可以直接从MaxCompute将数据导入。还可以根据业务类型,从自建的数据库(目前仅支持MySQL和SQLServer)或者是本地的Excel、CSV文件导入。


【注】本实验只使用导入本地文件的方法导入数据,从MaxCompute和MySQL导入数据的方法不做实践。

2. 从本地数据导入


阿里云的Quick BI支持将本地上的Excel与csv文件上传创建数据集。以某公司的销售数据为例。该文件可以在云中沙箱的实验附件中可以找到,直接点击文件名下载,如下图。


20200711141524263.png


在新弹出的窗口中选择本地EXCEL文件。


20200711141543220.png


点击后跳出上传页面,点击 选择文件 按钮,选择刚才下载的文件(Global Superstore Orders 2016.xlsx),在输入指定名称一栏将数据源的名称修改为Global_Superstore_Orders_2016。

20200711141656437.png


1)点击确定,稍等片刻即可在页面中查看到数据文件。

20200711141734620.png

2) 点击 创建数据集 按钮之后会弹出创建数据集对话框,点击 确定 按钮


20200711141801800.png


20200711141818937.png

3) 页面会跳转至数据集标签下,现在已经创建好了一个新的数据集。

20200711141836937.png

3. 从MaxCompute中导入


【注】在Quick BI中同样还支持导入MaxCompute数据,本实验中并未配置MaxCompute,因此在此仅对从MaxCompute导入做简单介绍,不纳入实验范围内。可以直接跳转至步骤2。


点击 数据源 按钮,然后点击 新建数据源


20200711141857440.png

然后在对话框中点击云数据库,然后点击MaxComputer按钮

20200711141915993.png


2) 在实际生产应用过程中,如果当前账号有配置MaxCompute项目的情况下,按照当前帐号下的MaxCompute项目名称以及该账号的Access ID与Access Key(可以在账号控制台下找到)将下列对话框中的信息完善,点击测试连接检查信息是否有误,将该连接添加进Quick BI。在此步骤中仅仅只是查看一下如何添加数据源的操作。


20200711141936317.png


3) 如果测试正确,将会显示下列的提示。一旦测试成功后就可以点击上图的添加按钮将MaxCompute的数据导入。


4) 稍等片刻刷新页面即可看到数据表已经导入了Quick BI。



20200711142005976.png

4. 从MySQL导入


【注】在Quick BI中同样还支持导入MySQL数据库的数据,本实验中并未配置MySQL服务,因此在此仅对从MySQL导入做简单介绍,不纳入实验范围内。

1)点击 数据源 按钮,然后点击 新建数据源


20200711142024523.png

然后在对话框中点击云数据库,然后点击MySQL按钮


20200711142043882.png


2)同样在测试连接无误后将其添加进数据源。这一步仅仅只是查看一下如何连接MySQL。在实际应用的过程中,等待数据同步后即可看到如下类似的数据表:


20200711142101145.png

2.3 制作单个交叉表


  1. 在工作空间中选择仪表板,然后点击新建仪表板,即可新建一个仪表板


20200711142729892.png

新建的仪表板界面如下图所示:

20200711142749446.png

可以看到,仪表板中默认生成了一张线图。由于本实验不需要使用线图,因此我们可以先将该线图删除。首先点击线图框右上角的按钮,然后点击删除按钮,即可删除线图


20200711142814203.png


 删除了线图之后,点击页面上方的交叉表按钮,新建交叉表


20200711142836356.png

3. 新建交叉表之后在页面的右侧,图表设计栏的选择数据集对话框中,选择我们之前创建的数据集Global_Superstore_Orders_2016


20200711142855936.png

选择了数据集之后,数据集中的字段就会出现在页面的最右侧

20200711142914948.png


4. 如果我们需要分析该公司每年的销售量,我们可以将维度中的订购日期(year)和度量中的数量分别拖动到相应的位置,如下图所示


20200711142935649.png

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
90 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
28天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
222 0
|
3月前
|
机器学习/深度学习 数据挖掘 大数据
大数据时代的“淘金术”:Python数据分析+深度学习框架实战指南
在大数据时代,数据被视为新财富源泉,而从海量信息中提取价值成为企业竞争的核心。本文通过对比方式探讨如何运用Python数据分析与深度学习框架实现这一目标。Python凭借其强大的数据处理能力及丰富库支持,已成为数据科学家首选工具;而TensorFlow和PyTorch等深度学习框架则为复杂模型构建提供强有力的技术支撑。通过融合Python数据分析与深度学习技术,我们能在各领域中发掘数据的无限潜力。无论是商业分析还是医疗健康,掌握这些技能都将为企业和社会带来巨大价值。
106 6
|
4月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
198 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
4月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
57 0
|
4月前
|
消息中间件 分布式计算 Kafka
MaxCompute 在实时数据分析中的角色
【8月更文第31天】随着大数据应用场景的不断扩展,对数据处理速度的要求越来越高,传统的批处理模式已经难以满足某些业务对实时性的需求。在这种背景下,实时数据处理成为了大数据领域的研究热点之一。阿里云的 MaxCompute 虽然主要用于离线数据处理,但通过与其他实时流处理系统(如 Apache Flink 或 Kafka Streams)的集成,也可以参与到实时数据分析中。本文将探讨 MaxCompute 在实时数据分析中的角色,并介绍如何将 MaxCompute 与 Flink 结合使用。
99 0
|
4月前
|
消息中间件 数据挖掘 Kafka
揭秘大数据时代的极速王者!Flink:颠覆性流处理引擎,让实时数据分析燃爆你的想象力!
【8月更文挑战第29天】Apache Flink 是一个高性能的分布式流处理框架,适用于高吞吐量和低延迟的实时数据处理。它采用统一执行引擎处理有界和无界数据流,具备精确状态管理和灵活窗口操作等特性。Flink 支持毫秒级处理和广泛生态集成,但学习曲线较陡峭,社区相对较小。通过实时日志分析示例,我们展示了如何利用 Flink 从 Kafka 中读取数据并进行词频统计,体现了其强大功能和灵活性。
83 0
|
6月前
|
存储 分布式计算 关系型数据库
实时数仓 Hologres产品使用合集之Hologres quickbi读holo是用的直读还是连接
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
7月前
|
分布式计算 大数据 BI
MaxCompute产品使用合集之MaxCompute项目的数据是否可以被接入到阿里云的Quick BI中
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。