贾扬清演讲实录:一个AI开发者的奇幻漂流

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 2021阿里灵杰AI工程化峰会,贾扬清深度解读阿里灵杰大数据和AI一体化平台

演讲人:贾扬清

演讲主题:一个AI开发者的奇幻漂流

活动:2021阿里灵杰AI工程化峰会


对于绝大多数人来说,这一波AI浪潮兴许是从深度学习开始的。

 

2011年谷歌发表的一篇文章讲到,用16000个CPU和11个参数的连接来训练一个能够识别猫的模型。

 

今天AI算法和应用百花齐放,给我们带来了非常多的梦想;而这几年整个行业的起起伏伏,背后也有许多弯路和故事。今天我们已经习惯了刷脸支付,但是似乎有一些更加高冷的梦想,比如像无人驾驶,都还只在路上。

 

我叫贾扬清,今天是一个消费网红的年代,所以我们起了一个名字叫奇幻漂流。如果可以的话,我想把自己描述成一个AI老兵。在人工智能的上半场当中,我们的体验可能没有那么奇幻,因为基本上我们就像拓荒者一样,身兼多个角色,在尝试着把AI 算法跟应用能够逐渐落地。

 

我们做过算法研究员,从AlexNet开始到ResNet ,到LSTM 到Transformer ,各种各样的模型,我们都希望逐渐把它落地。

 

Dingtalk_20211221143716.jpg


我们做过软件工程师,从各种各样的框架,像Torch、Theano、Caffe开始,到今天大家耳熟能详的Tensorflow和Pytorch,我们相当于在不断重新设计一套又一套语言,让我们能够把算法高效地实现出来。

 

我们做过数据工程师,把图片、语音、自然语言、用户各种行为等数据做清洗做标注,把它放在无论是磁盘还是数仓的各种地方,然后再输入到各种算法当中去来做应用。

 

最后。我们也做过系统工程师,从GPU开始到各种各样嵌入式的系统。我们搭了大大小小的系统,让我们这些模型能够简单更高效地跑起来。

当然我们也在不断地看应用,搭一个webserver ,做一个open API,把上面训练出来的模型能够实际的做成一个像刷脸,或者说hopefully 自动驾驶这样的应用。

 

但是我们就在想,老兵们遇到的挑战是什么?今天事情越来越多,各种组件越来越复杂。我们会发现,要把全链路问题都像以前这样人拉肩扛地解掉会累死也不可能。今天AI的应用已经不是一个模型,一个算法那么的简单。



 

回到技术的角度,数据、算法、模型、以及最重要的人,我们有了怎样的一些变化?我们希望能够做什么样的进一步思考?我想从这几个角度来比较过去和今天有什么样的区别。

 

我们先说数据,以前我们在做图片存储的时候,我们就把图片都放到一个磁盘上面去。

会发现速度比较慢,于是我们又把它放到一个,比如说类似LevelDB数据库上面,回过头来看,我们会发现这些就是非常标准的KV数据库。

 

在洞察用户行为的时候,我们首先要从Hive的数仓里面做各种各样的处理,把数据从Java的环境里搬出来。再到Python的环境里做训练,而这个训练底层的实现又是C++的,类似这样的拉通,以及AI的模型标准等等,这一系列的问题都变得非常麻烦。

 

而在AI应用当中,怎么样把数据回流下来,进一步地再做新的训练,这些数据链路的质量都会决定了最终应用的质量。今天我们就会非常需要一个大数据和AI 一体化的平台来解决数据的全生命周期当中各种各样的问题。

 

软件就更是一个备受关注的领域。如果往回倒8年,我们经常听到“我的框架比你的快”这样的比较。那么多年过去之后,今天为止我们依然看见有很多框架在走着老路,重新设计一套语言,重新设计一个开发环境等等。我觉得今天我们不需要来重复地造轮子。软件,或者说框架,核心主要在于两个,一个是往下如何来兼容各种各样的硬件、不同的处理器、不同的新的芯片,另一个是往上如何实现更好的分布式开发。

 

Dingtalk_20211221143816.jpg


尤其是当超大规模的模型变得越来越受关注,往下我们需要有更加好地AI编译环境,让软件和硬件更容易地迭代和开发。往上我们会需要有更好的系统和模型,或者说系统和算法工程师更好的相协同工作模式,让我们构建起分布式的模型以及规模化训练。在今天接下来的讲座当中,我们就会讲到在AICompiler 以及在分布式框架Whale等等上面做的工作和思考。

 

当有了数据和算法,我们怎么样来找到最需要的AI模型?最简单的方式是直接训练一个。但是图片、语音、自然语言处理等等领域有太多的模型,我们不可能每一个都从零开始自己训练。学术界有一个Model Hub ,我们经常可以在网上找到偏向学术的不同领域的模型。但这些实验模型怎样部署,会是个难题。工业界我们能够看到各种各样的AI服务,比如说像OCR 、语音识别等,但要把它们连接起来,好像又比较难。开发者自己也多多少少有一些自己的模型,我们怎么样来自己部署一个模型,怎么样实现所需要的弹性、稳定性、免运维的能力,怎么样把模型从非常大的训练结果到逐渐做量化、做蒸馏、做压缩,到变成一个可以在不同平台上部署的模型,这些都是我们在平台层面需要解决的问题。

 

最后我们来说人的故事。我们以前在做代码开发的时候,有GitHub等非常成熟的模式。AI要管的东西更多,有数据、有算法代码、有模型、有计算资源、有训练跟推理的资源。怎么样来让一个开发平台从以前的单机,到今天的多机多卡多个数据中心的情况下,依然能够高效地管理调度这些资源。今天后面会跟大家讲到,我们在AIdesigner 或者说AI 工作空间上的思考,用一个统一的空间来拉通我们的算法迭代,数据管理、模型训练和最后模型上线。

 

AI 的痛苦在于本质上今天AI还没有范式。AI 不是一个产品,这句话有两层含义,一方面它不光是一个单点的产品,而是一系列能力的组合;AI 今天非常强烈地需要标准软件和定制化服务的协同。

 

我们在云栖大会推出的阿里灵杰就是这样的一个大数据和AI一体化的产品体系。为什么要推出灵杰呢?我们非常强烈地意识到,我们需要把软件、定制化服务、以及开发者效率都结合起来。灵杰做的一件事情是,它将可以标准化的部分标准化,将没法标准化的部分用一系列工具和组件的方式提供出来,让开发者在定制上层服务的时候,能够更加便捷易用。

 v2-8726c2f24eec909359415868daad72e3_720w.jpg

我们可以把灵杰理解为四层产品的有机组合。它的最底层是基于云基础设施,比如像计算、存储、网络等等这一些我们耳熟能详的基础产品。和以前不同的是,我们并不需要思考,从资源视角怎么样搭一个集群、加一堆GPU、或者装一个硬盘。今天我们可以从需求视角来考虑,需要多大存储、怎样的异构计算、怎样通过云原生容器化等等方式把资源简单地链接起来。这是最底层基础设施给我们提供的简单化、便捷化的能力。

 


在上面是大数据和AI一体化的平台。我觉得它是灵杰的核心部分。首先它给我们提供了大数据跟AI结合的能力。比如MaxCompute平台已经可以调用10万台集群来支持2000万张表跟千万级任务调度,它的Serverless模式代表着我们可以在非常小的,例如一张表、一个数据集、一个GB、一个任务开始就用零公摊成本来使用几乎无限的弹性。

 和大家分享一个数字。过去我们经常有一个感觉,觉得大数据和AI是分开的。当我们在看阿里集团内自己的应用情况时,在大数据平台上,有超过30%的数据计算都已经应用于AI模型训练,这里都还没有计入AI推理这块。通过AI  Compiler和Whale软件框架,我们今天也在进一步提升AI计算效率。 当然平台的另一个重点是提升开发效率。在今天后面的分享中,我们会向大家介绍在大数据和AI一体化的平台上,如何用AI 工作空间这样的轻量化平台,以及PAI-DSW、PAI-DLC、PAI-EAS等组件来打通数据、训练、资源管理、推理和服务等等这一系列挑战。 工程平台最终目的是为了实现算法创新。想象一下8年前我们要做一个AI应用的时候应该怎么办?基本上就是我们自己去搜集数据,然后训练一个模型,再非常痛苦地把这个模型在自己手工搭建Web Server里面透出出来。还要时刻担心,如果没有人来访问这个模型,是不是资源就浪费了,如果太多人来访问,是不是服务稳定性又会打折扣。 


今天很多AI能力,比如说像OCR、语音、自然语言处理等等,都已经是标准化开箱即用的状态了。因此阿里云的工程师和达摩院的算法同学们合作,在10多种场景下的开放服务层,提供了上百种标准化的算法模型和服务,来解决AI落地应用最后一公里的问题。无论是OCR、语音、还是文本的理解,我们希望能够通过一个标准的模式来实现AI 模型的开通、接入和使用流程,就像下载和使用一个APP那么简单。 在灵杰之上我们搭建了非常多应用,今天大家可能都经常听见,像城市大脑、医疗大脑等等这样的概念。今天后面分享当中,我们想跟大家分享在互联网领域一个非常典型的应用,就是像在电商这类业务中,如何实现更高效地增长。它的本质就是怎么样把用户和他们所感兴趣的内容结合起来,最终达到用户体验和商业结果双赢的局面,后面的分享会有更细节地呈现。 总结一下,8年前我们说能够训练一个图像识别模型然后搭一个小的demo,就已经是一个顶级的AI开发者了。今天我们所面对的需求是将AI 的数据、算法和场景结合起来,去构建一个完整而且更加复杂的解决方案,来解决各行各业当中的实际问题。 从开发的角度来说,从我们想写第一行代码开始,到写下第一个AI模型需要多久?从应用的角度来说,从我们看到一个需求到prototype上线和服务需要多久? 这是我们今天一直在考虑的问题。阿里灵杰解决这个问题的思路,就是让不同的开发者们都能够按需取用、开箱即用。从最底层的基础产品,到中间的开发平台,到上层的开放服务,来帮助各行各业的科学家们和开发者们在云上一起画出人工智能增长的第二曲线。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
5月前
|
人工智能 自然语言处理 算法
创作吧开发者第三期:AI的奇思妙想之旅
从认识AI算法到使用AI工具再进阶为算法性能提升,不知不觉中,AI智能家居与私人助手成为了最熟悉我们生活的小助理。此外,文学、美术及音乐的联动,AI的创意作品也给我们带来更多的想象。 快来用文字为AI记录成长轨迹,用想象探索AI的无限奥秘,让灵感在字里行间流淌,你的每一个想法和记录都会成为AI浩瀚宇宙中的星辰!期待与各位创意满满且热爱创作的你们,共赴一场AI的奇思妙想之旅!
634 18
|
1天前
|
人工智能 数据管理 API
来自开发者的点赞,阿里云百炼入选 2024 最受开发者欢迎的 AI 应用开发平台榜
2024年最受开发者欢迎的AI应用开发平台榜单发布,阿里云百炼入选15强。持续推动AI开发者生态建设,提供开放平台、培训支持、行业解决方案,注重数据安全与合规,致力于生态合作与共赢,加速企业数智化转型。
|
2月前
|
人工智能 开发框架 搜索推荐
AI 骁龙 PC 开发者 技术 沙龙
AI 骁龙 PC 开发者 技术 沙龙
35 1
|
2月前
|
机器学习/深度学习 人工智能 监控
利用AI提升代码质量:现代开发者的利器
【10月更文挑战第4天】在软件开发中,代码质量是项目成功的关键。本文探讨了如何利用AI提升代码的可读性、可维护性和性能。AI可通过代码审查自动化、自动化测试、性能优化和安全漏洞检测等多种方式帮助开发者。具体实践步骤包括选择合适的AI工具、集成工具、训练模型以及持续监控改进。实际应用案例如SonarQube、DeepCode等展示了AI在现代开发中的巨大潜力,预示着AI将在未来软件开发中扮演更重要角色。
|
3月前
|
人工智能 物联网 开发者
魔搭上线AIGC专区,为开发者提供一站式AI创作开发平台
魔搭上线AIGC专区,首批上架157个风格化大模型,专业文生图全免费~
140 16
|
3月前
|
人工智能 运维 云计算
阿里云无影AI云电脑亮相 体验大幅升级
9月20日,2024云栖大会上阿里云无影AI云电脑全新亮相,基于最新的终端云计算技术和AI大模型能力,无影的综合体验大幅提升,新增了弹性升降配、双网自由切换、多端操作系统知识库问答、编码大师等AI智能体功能,为安全办公、个人娱乐带来全新的云上流畅体验,更可畅玩《黑神话:悟空》等3A游戏大作。同时,无影还宣布向开发者全面开放应用中心生态,开发者可免费入驻。
1302 15
|
2月前
|
机器学习/深度学习 人工智能 测试技术
AI是在帮助开发者还是取代他们?
AI是在帮助开发者还是取代他们?
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
|
4月前
|
人工智能 自然语言处理 开发者
通义灵码助力开学第一课!百万开发者首选的 AI 编码工具通义灵码是如何炼成的?
我们非常高兴的宣布,通义灵码插件下载量突破400万啦!
1590 1
通义灵码助力开学第一课!百万开发者首选的 AI 编码工具通义灵码是如何炼成的?
|
5月前
|
人工智能 Cloud Native 开发者
开发者们,AI 原生应用架构专场 ·上海站来啦
云原生开源开发者沙龙 AI 原生应用架构专场,邀您一起交流,探索 AI 原生应用的工程化落地!
373 16