高性能计算技术也能助推大规模深度学习(百度实践)

简介: 本文描写了百度硅谷人工智能实验室在深度学习框架中引入HPC技术的实践,通过对OpenMPI里ring all-reduce算法进行改进,使语音识别训练模型的性能得到数十倍的提升,最后百度开源了其实现,希望更多的人受益。

更多深度文章,请关注:https://yq.aliyun.com/cloud

作者简介:

1ce2199fbc603a104d7e1c2d7598193e2fac99c0

Tiffany Trader,毕业于圣地亚哥州立大学和加州州立大学,长期致力于高性能计算、云计算、绿色计算新闻报道和分析,2015年开始担任全球知名高性能计算新闻网站HPCwire的总编辑。Tiffany Trader 的LinkedIn主页Twitter主页


    来自百度硅谷人工智能实验室(SVAIL)的研究人员改进了众所周知的HPC通信技术,提升了通信速度,并且扩大了他们的神经网络训练规模,今天,在知名深度学习社区分享了他们的实现。

    百度改进的这个技术就是OpenMPI算法ring all-reduce,在百度的语音识别模型(Deep Speech 2,建立在多个GPU计算节点之上)并行训练中使用了ring all-reduce算法,百度在今年2月开源了两个软件包,一个是baidu-allreduce c库(一个小型C++库),另一个是tensorflow-allreduce(给tensorflow 0.12.1打了一个补丁),使用tensorflow建立的模型可以使用这个新的版本,利用它的跨多设备并行处理能力。相关代码托管在GitHub上,有兴趣的读者点击前面的链接即可。

    百度的SVAIL团队大约两年前开始在他们内部的深度学习框架(名叫Gene and Majel,为了向著名的星际旅行创立者Gene Roddenberry和他的第二任妻子Majel Barrett致敬)上使用这个算法,百度研究人员表示,在HPC领域,大家对这个算法早已是老生常谈,但在人工智能和深度学习领域,这个算法却未被充分利用。

    SVAIL团队成员大都来自高性能计算领域。百度研究科学家Shubho Sengupta说:“ring all-reduce算法其实是OpenMPI的一部分,但OpenMPI本身并不是很快,我们在刚用它来进行训练时遇到了不少问题,我们发现它的伸缩能力有限,但我们又很想让它具有良好的伸缩性,因此我们决定研究它的源代码,最终发现这个算法的效率不高,我们就重新实现了这个算法”。

    SVAIL研究人员重写的ring all-reduce算法性能更好,也更稳定,与OpenMPI最大的差别是,SVAIL实现的算法避免了CPU和GPU之间额外的副本传输。

    Sengupta解释,“OpenMPI在这些矩阵通信时,如果矩阵在GPU内存中,它实际上会复制一份到CPU内存中,这种做法是非常浪费资源的,实际上可以不用复制,只需要编写一个小的内核来减少GPU内存空间即可,当你在一个节点内执行all-reduce,并且所有GPU都在一个PCI根复合体中时这种方法特别有用,在GPU内存空间就可以完成一切任务,就是这么一个简单的想法,最终我们的算法实现比OpenMPI自身的要快得多”。

516720dc3fd12b9d50342efc534509cf18c3dcee

Ring all-reduce,所有GPU同时发送数据

    SVAIL除了在算法实现上有突破外,他们还注重高速网络(InfiniBand)和软硬一体设计,最终使GPU纵向扩展到128个,具体细节请查阅2015年12月SVAIL团队发布的论文“Deep Speech 2:中英文端到端语音识别”。通过对ring all-reduce算法的改进,与OpenMPI(v1.8.5)相比,百度SVAIL团队在同等GPU数量的情况下,将速度提升了2.3-21.4倍。

    Sengupta表示,GPU数量很少时速度是最快的,“8颗GPU是快大约20倍,睡着GPU数量的增加,性能反而会有所下降,因为必须通过网络将数据发送给CPU,但在我们内部的框架上,我们可以将GPU数量扩大到128颗,实现线性扩展”。

be1c1c6e1ec53f5561e8e8b40a7374511d004ea4

两种all-reduce算法实现的性能对比(单位:秒)

    Deep Speech 2论文发布后,SVAIL团队开始收到来自社区想了解实现细节的请求,由于这个算法与SVAIL的深度学习框架专利结合得太紧密了,因此,他们就创建了两种实现方法,一个是针对TensorFlow的,另一个就是更通用的。

    领导TensorFlow补丁工作的Gibiansky阐述了他们多管齐下传播信息的方法,“看看这篇博客你就知道了,如果你在使用TensorFlow,可以使用我们提交的补丁版本来训练你的模型,如果你是深度学习的作者,你可以看看我们的C库,并集成它,通过我们内部的尝试结果来看还是非常成功的,我们希望让更多的人受益于此”。

    Sengupta就深挖HPC技术用于深度学习分享了一个有趣的观点, “搞深度学习的人总认为MPI是一项过时的技术,并且好像和深度学习也没什么关系,但我认为使用MPI也可以搭建非常快的集合,并且支持同步梯度下降,使收敛速度更快,不需要用到异步梯度下降就能得到结果”。

    关于百度ring all-reduce算法的详细解释,请看百度研究院的这篇博客文章,对于百度开源的深度学习框架PaddlePaddle来说,它还使用了其它大量的技术来保证高性能节点的扩展,有兴趣的同学可以到PaddlePaddle的主页去看看。

 数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

以上为译文。

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《HPC Technique Propels Deep Learning at Scale

作者:Tiffany Trader,译者:耕牛的人,审校:身形。

文章为简译,更为详细的内容,请查看原文

 

相关文章
|
4天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
30 5
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
8天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的自编码器:从理论到实践
在这篇文章中,我们将深入探讨深度学习的一个重要分支——自编码器。自编码器是一种无监督学习算法,它可以学习数据的有效表示。我们将首先介绍自编码器的基本概念和工作原理,然后通过一个简单的Python代码示例来展示如何实现一个基本的自编码器。最后,我们将讨论自编码器的一些变体,如稀疏自编码器和降噪自编码器,以及它们在实际应用中的优势。
|
6天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
37 1
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从理论到实践的探索之旅
在人工智能的璀璨星空中,深度学习如同一颗耀眼的新星,以其强大的数据处理能力引领着技术革新的浪潮。本文将带您走进深度学习的核心概念,揭示其背后的数学原理,并通过实际案例展示如何应用深度学习模型解决现实世界的问题。无论您是初学者还是有一定基础的开发者,这篇文章都将为您提供宝贵的知识和启发。
38 5
|
12天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
49 6
|
10天前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
6天前
|
机器学习/深度学习 存储 人工智能
探索深度学习的奥秘:从理论到实践的技术感悟
本文深入探讨了深度学习技术的核心原理、发展历程以及在实际应用中的体验与挑战。不同于常规摘要,本文旨在通过作者个人的技术实践经历,为读者揭示深度学习领域的复杂性与魅力,同时提供一些实用的技术见解和解决策略。
19 0

热门文章

最新文章