不用一行代码,如何10分钟快速打造AI助手?

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 推荐免费下载《10分钟打造专属AI助手》电子书,助力快速搭建AI客服系统。本文介绍了如何在10分钟内构建能主动提问的智能导购系统,提升客户体验。通过阿里云平台,无需编码即可创建具备大模型能力的AI机器人,实现7x24小时商品推荐与客户服务。文中详细描述了从创建函数计算应用、访问示例网站到验证智能导购效果的全过程,并提供了关键代码示例。此外,还介绍了如何将智能导购集成到生产环境的方法,包括修改知识库和源码以适配具体产品。

一、背景

常常出现在网站右下角的AI客服、钉钉群智能机器人、企业微信应用的AI助手、微信公众号的24小时服务机器人,这些工具已经成为现代企业提升客户体验的重要手段。那么,如何拥有一个自己的专属AI助手呢?我们推出了《10分钟打造专属AI助手》电子书,集成多个场景,提供详尽教程,点击阅读原文即可下载。在下方评论区参与讨论,高质量回答有机会获得惊喜礼物🎁~

今天,我们将重点介绍如何在10分钟内构建一个能主动提问的智能导购。为了高效应对客户咨询,提升用户体验,快速搭建AI客服系统显得尤为重要。AI客服系统可以实现全天候(7x24)响应客户需求,无论客户何时何地提出问题,都能得到及时的解答和支持。在阿里云上,只需10分钟,无需任何编码,即可创建一个具备大模型能力的AI机器人,还能解答私域问题,成为您业务的专属机器人。

二、10 分钟构建能主动提问的智能导购

《10分钟打造专属AI助手》抢先读 —— 10 分钟构建能主动提问的智能导购

方案概览:

当您去电器商城购买冰箱,您首先向前台发起询问哪里可以买到冰箱,前台将您带到了冰箱商店的位置;在冰箱商店,导购员向您询问想要什么参数的冰箱,并根据这些参数将合适的冰箱推荐给您。

image.png

类似的,您可以通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购,其中:

  • 规划助理(Router Agent)是该应用的核心,它会参考对话历史与用户的输入,选择合适的助理进行回复。
  • 手机导购、冰箱导购与电视导购接收规划助理的指派信息,主动向顾客询问商品参数偏好;在参数收集完成后,系统可以通过百炼应用进行智能商品检索,也可以使用SQL查询商品数据库,然后输出推荐的商品。
  • 用户与各助理的对话历史可以为每个助理的决策提供参考依据。

image.png


搭建步骤:

您可以通过我们提前准备好的函数计算应用模板,快速搭建并测试一个集成了智能导购的网站。详细步骤如下:

1. 创建函数计算应用

您可以访问我们准备好的函数计算应用模板,快速搭建一个集成智能导购的网站。智能导购可以通过多轮交互,收集顾客心仪的商品信息,默认商品包含手机、电视与冰箱。参考下图选择直接部署并填写您的 API Key,您可以访问我的API-KEY来获取您的API Key。其它表单项保持默认,单击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。

image.png

2. 访问网站

在函数计算应用部署完成后,您可以在跳转后的页面的环境信息中找到示例网站的访问域名,单击即可查看,确认示例网站已经部署成功。

image.png

3. 验证智能导购效果

智能导购会主动询问并收集需要的商品参数信息;收集完成后打印出参数信息。

image.png


关键代码

上述示例程序中用于意图识别的模块是规划助理(Router Agent)。经过规划助理的意图分类后,用户的问题会被传递给对应的手机导购 Agent、电视导购 Agent 或冰箱导购 Agent。

规划助理(Router Agent)

ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
请结合用户的提问和上下文判断用户是希望了解的商品具体类型。

注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:
- 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
- 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
- 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
- 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)

输出示例:
手机
"""
router_agent = Assistants.create(
    model="qwen-plus",
    name='引导员,路由器',
    description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
    instructions=ROUTER_AGENT_INSTRUCTION
)


手机导购助理

MOBILEPHONE_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐手机的智能导购员。

你需要按照下文中【手机的参数列表】中的顺序来主动询问用户需要什么参数的手机,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【手机的参数列表】
1.使用场景:【游戏、拍照、看电影】
2.屏幕尺寸:【6.4英寸、6.6英寸、6.8英寸、7.9英寸折叠屏】
3.RAM空间+存储空间:【8GB+128GB、8GB+256GB、12GB+128GB、12GB+256GB】

如果【参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:用于拍照|8GB+128GB|6.6英寸。问他是否确定需要这个参数的手机。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【使用场景:拍照,屏幕尺寸:6.8英寸,存储空间:128GB,RAM空间:8GB】。请你只输出这个格式的内容,不要输出其它信息。"""

mobilephone_guide_agent = Assistants.create(
    model="qwen-max",
    name='手机导购',
    description='你是一个手机导购,你需要询问顾客想要什么参数的手机。',
    instructions=MOBILEPHONE_GUIDE_AGENT_INSTRUCTION
)

电视导购助理


MOBILEPHONE_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐手机的智能导购员。
你需要按照下文中【手机的参数列表】中的顺序来主动询问用户需要什么参数的手机,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。
【手机的参数列表】
1.使用场景:【游戏、拍照、看电影】
2.屏幕尺寸:【6.4英寸、6.6英寸、6.8英寸、7.9英寸折叠屏】
3.RAM空间+存储空间:【8GB+128GB、8GB+256GB、12GB+128GB、12GB+256GB】
如果【参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:用于拍照|8GB+128GB|6.6英寸。问他是否确定需要这个参数的手机。如果顾客决定不购买,要问他需要调整哪些参数。
如果顾客确定这个参数符合要求,你要按照以下格式输出:
【使用场景:拍照,屏幕尺寸:6.8英寸,存储空间:128GB,RAM空间:8GB】。请你只输出这个格式的内容,不要输出其它信息。"""
mobilephone_guide_agent = Assistants.create(
    model="qwen-max",
    name='手机导购',
    description='你是一个手机导购,你需要询问顾客想要什么参数的手机。',
    instructions=MOBILEPHONE_GUIDE_AGENT_INSTRUCTION
)

冰箱导购助理

FRIDGE_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐冰箱的智能导购员。

你需要按照下文中【冰箱的参数列表】中的顺序来主动询问用户需要什么参数的冰箱,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【冰箱的参数列表】
1.容量:【300L、400L、500L】
2.冷却方式:【风冷、直冷】
3.高度:【1.5米、1.8米、2米】

如果【冰箱的参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:300L|风冷|1.8米。问他是否确定需要这个参数的冰箱。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【容量:300L,冷却方式:风冷,高度:1.8米】。请你只输出这个格式的内容,不要输出其它信息。"""

fridge_guide_agent = Assistants.create(
    model="qwen-max",
    name='冰箱导购',
    description='你是一个冰箱导购,你需要询问顾客想要什么参数的冰箱。',
    instructions=FRIDGE_GUIDE_AGENT_INSTRUCTION
)

选择不同的 Agent 进行回复

agent_map = {
    "意图分类": router_agent.id,
    "手机": mobilephone_guide_agent.id,
    "冰箱": fridge_guide_agent.id,
    "电视机": tv_guide_agent.id
}

def chat(input_prompt, thread_id):
    # 首先根据用户问题及 thread 中存储的历史对话识别用户意图
    router_agent_response = get_agent_response(agent_name="意图分类", input_prompt=input_prompt, thread_id=thread_id)
    classification_result = parse_streaming_response(router_agent_response)

    response_json = {
        "content": "",
    }
    # 如果分类识别为其他时,引导用户调整提问方式
    if classification_result == "其他":
        return_json["content"] = "不好意思,我没有理解您的问题,能换个表述方式么?"
        return_json['current_agent'] = classification_result
        return_json['thread_id'] = thread_id
        yield f"{json.dumps(return_json)}\n\n"
    # 如果分类是手机、电视机或冰箱时,让对应的 Agent 进行回复
    else:
        agent_response = get_agent_response(agent_name=classification_result, input_prompt=input_prompt, thread_id=thread_id)
        for chunk in agent_response:
            response_json["content"] = chunk
            response_json['current_agent'] = classification_result
            response_json['thread_id'] = thread_id
            yield f"{json.dumps(response_json)}\n\n"


总结

通过以上步骤,您搭建了一个集成了智能导购的网站,可以全天候向顾客提供商品推荐服务。本案例中的架构也适用于智能问诊、求职推荐等场景。

应用于生产环境

为了将智能导购适配到您的产品并应用于生产环境中,您可以:

1. 修改知识库。将您的商品信息作为知识库,同时您也可以在商品参数中添加商品详情页或下单页的链接,方便顾客进行浏览与下单。您也可以通过已有的数据库或其它服务中进行商品检索。

2. 修改源码中的prompt来适配到您的产品中。修改源码的步骤为:

  1. a. 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。
  2. b. 进入函数详情页后,在代码视图中找到prompt.py、agents.py文件并进行修改。
prompt.py定义了agent的功能以及询问参数的顺序等信息;agents.py创建了agent,以及生成回复的函数。

c. 单击部署代码,等待部署完成即可。

3. 参考《10分钟打造专属AI助手》中给网站添加AI助手中的应用于生产环境部分,将智能导购集成到您的网站中。

系统学习-电子书免费下载

文末福利:免费下载《10分钟打造专属AI助手》电子书!

10分钟创建AI助手系列可以应用至网站、微信公众号、企业微信和钉钉组织等多种场景。为了便于阅读和学习,我们将这些教程集成为《10分钟打造专属AI助手》电子书,点击免费下载阅读!开启您的AI客服之旅!无论您是技术小白还是资深开发者,这本书都将为您提供宝贵的指导,帮助您在短时间内搭建出功能强大的AI助手。

相关文章
|
1月前
|
人工智能 移动开发 JavaScript
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
142 18
|
3月前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
6957 6
|
27天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
275 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
RealtimeSTT 是一款开源的实时语音转文本库,支持低延迟应用,具备语音活动检测、唤醒词激活等功能,适用于语音助手、实时字幕等场景。
108 18
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
|
25天前
|
人工智能 安全 API
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
OpenHands 是一款基于 AI 的编程工具,支持多智能体协作,能够自动生成代码、执行命令、浏览网页等,显著提升开发效率。
134 26
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
|
2月前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
15天前
|
人工智能 JavaScript 前端开发
一段 JavaScript 代码,集成网站AI语音助手
根据本教程,只需通过白屏化的界面操作,即可快速构建一个专属的AI智能体。
|
18天前
|
存储 人工智能 OLAP
百炼融合AnalyticDB,10分钟创建网站AI助手
百炼融合AnalyticDB,10分钟创建网站AI助手。本课程由阿里云产品经理陈茏久分享,涵盖大模型行业变革、向量数据库驱动RAG服务化探索、方案优势及应用场景、产品选型配置及最新发布等内容。通过整合通义百炼和AnalyticDB,用户可快速搭建具备企业私域知识的AI助手,实现智能客服、教育、汽车等多行业的应用升级。教程详细介绍了从环境搭建到知识库配置的全流程,并提供了免费试用资源,帮助用户低成本体验核心能力。
|
18天前
|
存储 人工智能 OLAP
云端问道10期方案教学-百炼融合AnalyticDB,10分钟创建网站AI助手
本次分享由阿里云产品经理陈茏久介绍,主题为“百炼融合 AnalyticDB,10 分钟创建网站 AI 助手”。内容涵盖五个部分:大模型带来的行业变革、向量数据库驱动的 RAG 服务化探索、方案及优势与典型场景应用案例、产品选型配置介绍以及最新发布。重点探讨了大模型在各行业的应用,AnalyticDB 的独特优势及其在构建企业级知识库和增强检索服务中的作用。通过结合通义千问等产品,展示了如何在短时间内创建一个高效的网站 AI 助手,帮助企业快速实现智能化转型。
|
2月前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
81 12