MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果

简介: MATLAB - Gazebo 联合仿真 —— 使用 UR10 机械臂检测和采摘水果

前言

本示例演示如何在 Gazebo 物理模拟器中设置 Universal Robotics UR10 机械臂和仿真环境。您需要配置一个机器人从树上摘苹果的仿真环境。

本示例演示如何利用这些工具箱,使用 Universal Robotics UR10 机械手模拟机器人检测并从树上摘取苹果。

  • Robotics System Toolbox™ - 在 Simulink®Gazebo 中对机械手进行建模、规划和模拟。
  • Navigation Toolbox™ - 生成三维环境的占用图。
  • Stateflow® - 调度示例中的高级任务并按顺序执行。
  • Computer Vision Toolbox™ - 处理三维点云数据。
  • Deep Learning Toolbox™ - 使用 Gazebo 中的模拟摄像头检测物体。
  • Computer Vision Toolbox™ Model for YOLO v4 Object Detection - 提供预训练的 YOLO v4 csp-darknet53-coco 物体检测网络。

要使用预训练的 YOLO v4 csp-darknet53-coco 物体检测网络,您必须从附加组件资源管理器下载并安装用于 YOLO v4 物体检测的 Computer Vision Toolbox™ Model。有关安装附加组件的更多信息,请参阅获取和管理附加组件。

本示例中的板条箱模型版权归 Arturo Matheus 所有,采用 1.3 版自由艺术许可协议进行许可。原始板条箱模型可在 sweethome3d 上获取。


一、设置 Gazebo 仿真环境

请按照以下步骤设置仿真环境。

  1. 要下载带有 Gazebo 的虚拟机 (VM),请按照在 Simulink 和 Gazebo 之间执行协同仿真中的说明操作。
  2. 在虚拟机设置中,在虚拟机 > 设置 > 硬件 > 显示下,禁用加速 3D 图形。有关更多信息,请参阅准备虚拟机以使用加速 3D 图形。
  3. 启动 Ubuntu® 虚拟机桌面。
  4. 在 Ubuntu 桌面上,单击 Gazebo Co-Sim Fruit Picking 启动本例的 Gazebo 世界。

二、在 Gazebo 中模拟和控制机器人

本示例使用 Gazebo 协同仿真 Simulink 模块来连接、读取摄像头图像以及读取和设置关节位置。Gazebo 世界包含一个带有 RGB-D 深度(RGB-D)摄像头传感器的 Universal Robotics UR10 机械臂机器人模型。Gazebo 世界还包含一棵苹果树和一个收集苹果的箱子。

2.1 概述

模拟开始时,机械手处于原点配置。然后,机械手移动到图像抓取位置,从 Gazebo 收集 RGB-D 图像。当机器人接收到图像时,它会使用 YOLO v4 物体检测网络检测并识别苹果。然后,机器人计算出目标位置,并将其发送给运动规划子系统。然后,模型使用操纵器RRT 对象在图像抓取位置和计算出的目标位置之间进行运动规划。当机器人接近目标苹果时,抓手手指张开,当机器人摘到苹果后,抓手手指关闭。然后,模型规划目标位置和苹果下落位置之间的运动。然后,机械手向苹果下落位置移动,并打开抓手,将苹果放入箱子中。接着,机械手移回图像抓取位置。这个过程一直持续到机器人从树上取下所有苹果为止。

Simulink 模型

Simulink 模型由这些子系统组成。

  • 任务调度器
  • 感知和目标生成系统
  • 运动规划
  • 抓手和关节控制系统

2.2 任务调度器

状态流程图定义了机器人手臂在取放工作流程中的不同状态。该图包含以下步骤。

  1. 最初,闲置状态(IdleState)触发并过渡到原点状态(HomeState)。
  2. 在 HomeState 状态下,当前配置通过运动规划过渡到图像抓取配置。
  3. 当 HomeState 结束时,它会触发 PerceptionState,捕捉 RGB-D 图像并过渡到 GrabState。
  4. 为了让机械手向目标移动,GrabState 会计算目标苹果的位置并执行运动规划。
  5. 机械手在向目标移动时打开抓手,到达目标后开始关闭抓手。
  6. 当 GrabState 结束时,抓手关闭以抓取苹果。
  7. 然后,ReleaseState 计划目标位置和苹果下落位置之间的运动。
  8. 机械手在到达苹果下落位置后,打开抓手并释放苹果。
  9. 机械手回到原点状态,从树上摘下一个苹果。
  10. 这个过程一直持续到机械手从树上摘下所有苹果为止。

2.3 感知和目标生成系统

感知系统模块和目标生成系统模块通过 Gazebo 读取模块从 Gazebo 中查询 RGB-D 图像,并通过接收到的 RGB-D 图像检测目标苹果生成目标姿态。

感知系统使用深度学习对象检测器(计算机视觉工具箱)模块,从输入的 RGB 图像中估计边界框和标签。子系统对标签进行细化,只选择苹果标签。感知系统从所有检测到的苹果标签列表中选择第一个苹果标签作为目标苹果,并通过输入的深度图像计算三维目标姿态。此外,子系统还会根据输入的深度图像计算运动规划中所需的点云。

2.4 运动规划

感知和目标生成器系统会生成目标姿态,并将其发送至目标配置生成器模块,以生成目标关节配置。获取目标姿势模块利用机械手的基准位置、末端执行器偏移和当前状态输入计算目标姿势。然后,逆运动学程序块根据计算出的目标姿势、权重和初始猜测计算出目标关节配置。

运动规划模块从 Gazebo 中获取当前关节配置,并使用操纵器RRT 对象进行运动规划。此外,子系统还会使用 occupancyMap3D(导航工具箱)对象为计算出的点云生成三维占位图。为了避免 Gazebo 世界中复杂的树形结构,子系统将该占用图作为运动规划的输入之一。最后,子系统根据运动规划中计算出的航点来估算关节位置。

2.5 机械臂和关节控制系统

Gazebo 应用命令块将估算的关节位置应用到 Gazebo 模型中。Gazebo 读取模块从 Gazebo 中获取当前的关节位置。抓手控制器模块使用 Gazebo 应用命令块对每个抓手手指关节施加扭矩。此外,任务调度程序中的状态转换会计算关节差,并利用关节差执行状态转换。

三、分配用于控制机器人的参数

打开 Simulink 模型。

open_system("FruitPickingGazeboManipulator.slx");

3.1 定义机器人模型和运动规划参数,

使用 loadrobot 对 universalUR10 机械手进行加载和可视化。

robot = loadrobot("universalUR10",DataFormat="row",Gravity=[0 0 -9.81]);
show(robot)


ans = 
  Axes (Primary) with properties:

             XLim: [-2 2]
             YLim: [-2 2]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

在 Gazebo 世界中,RGB-D 摄像机和抓手连接到 Universal Robotics UR10 机器人模型的手腕_3_link 上。因此,请指定 wrist_3_link 为末端执行器。

endEffectorName = "wrist_3_link";

为 universalUR10 机器人模型指定所附抓手偏移量。

endEffectorOffset = [0.0 -0.27 0.0];

初始化运动规划参数

initializeMotionPlanningParameters

3.2 定义机械手姿势和摄像机参数

加载要在 Gazebo 模拟器中应用的相机设置。

initializeCameraParameters

要抓取图像,请定义 universalUR10 机器人移动到的位置。

imageGrabPositionTform = eye(4);
imageGrabPositionTform(1:3,4) = [0.1639 -0.6120 0.5839];
imageGrabPositionTform(1:3,1:3) = eul2rotm([0 0 0]);

定义机械手图像抓取位置的初始猜测配置。

imageGrabPositionInitialGuess = [-pi/2 0 -pi/2 pi/2 -pi/2 pi];

定义采摘苹果的下落位置。

releasePositionInitialTform = eye(4);
releasePositionInitialTform(1:3,4) = [-0.1348 -0.5613 0.3530];
releasePositionInitialTform(1:3,1:3) = eul2rotm([5*pi/6 0 -5*pi/6]);

定义机械手目标释放位置的初始猜测配置。

releasePositionInitialGuess = [-2*pi/3 -pi/2 2*pi/3 -pi/3 -pi/2 0];

3.3 配置 Gazebo 协同仿真设置

定义 Gazebo 协同模拟模块的采样时间。

Ts = 0.01;

打开 Gazebo Pacer 块,点击配置 Gazebo 网络和模拟设置链接。在网络地址下拉菜单中,选择自定义。输入 Linux 机器的 IP 地址。Gazebo 的默认端口值是 14581。将响应超时设置为 10。


单击 "测试 "按钮,测试与运行中的 Gazebo 模拟器的连接。

3.4 定义夹具控制设置

分配机械手开合力度值。

gripperOpenEffort = -0.15;
gripperCloseEffort = 0.15;

4. Simulink 模型

要执行模拟并将其可视化,请单击 “运行”。

image.png

FruitPickPlaceSimulinkGazebo

在 MATLAB 中可视化检测到的苹果和深度图像。


目录
相关文章
|
13天前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
8天前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
24 1
|
2天前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
2天前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6天前
|
算法 5G 数据安全/隐私保护
SCM信道模型和SCME信道模型的matlab特性仿真,对比空间相关性,时间相关性,频率相关性
该简介展示了使用MATLAB 2022a进行无线通信信道仿真的结果,仿真表明信道的时间、频率和空间相关性随间隔增加而减弱,并且宏小区与微小区间的相关性相似。文中介绍了SCM和SCME模型,分别用于WCDMA和LTE/5G系统仿真,重点在于其空间、时间和频率相关性的建模。SCME模型在SCM的基础上进行了扩展,提供了更精细的参数化,增强了模型的真实性和复杂度。最后附上了MATLAB核心程序,用于计算不同天线间距下的空间互相关性。
10 0
|
6天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
8天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
8天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。

热门文章

最新文章