基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证

简介: 这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到"result.txt"以供MATLAB显示图像分割效果。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
VIVADO2019.2

matlab2022a

3.算法理论概述
图像阈值计算和分割是图像处理领域的一项重要任务,它通过设定一个阈值将图像从灰度空间转化为二值空间,从而实现对图像区域的有效划分。基于直方图的阈值选取方法主要依赖于图像的灰度直方图分布特性。

在开始之前,我们需要了解直方图和阈值分割的基本概念:

直方图:图像的直方图是表示图像中每个灰度级出现频率的图表。对于灰度图像,直方图显示了从黑到白(通常是0到255)的灰度值分布。

阈值分割:阈值分割是指通过一个阈值将图像的像素分为两组(通常是前景和背景),使得两组之间的差异最大化。

4.部分核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//

// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
//MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等算法仿真

module test_image;

reg i_clk;
reg i_rst;
reg i_ready;
reg [7:0] Tmp[0:100000];
reg [7:0] datas;
wire[15:0]o_histb;

wire[7:0]o_lvl;
wire[7:0]o_y;

integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\code2

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code2\data.bmp","rb");
dat = $fread(Tmp,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;
i_ready=0;

1000;

i_ready=1;
i_rst=0;

655350;

i_ready=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
datas<=Tmp[jj];
jj<=jj+1;
end

im_hist im_hist_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_ready (i_ready),
.i_xin (datas),
.o_histb (o_histb),
.o_lvl (o_lvl),
.o_y (o_y)
);

//将数据导出,由MATLAB显示图像分割效果
integer fout1;
initial begin
fout1 = $fopen("result.txt","w");
end

always @ (posedge i_clk)
begin
if(jj>=66613+1 & jj<=66613+65536)
$fwrite(fout1,"%d\n",o_y);
else
$fwrite(fout1,"%d\n",0);
end

endmodule

```

相关文章
|
1月前
|
算法 数据挖掘 测试技术
犬类癌症检测(CANDiD)研究:使用独立测试集对1000多只犬进行基于高通量测序的多癌种早期检测"液体活检"血液测试的临床验证
这项研究首次在大规模独立测试集上验证了基于NGS的液体活检在犬类多癌种检测中的应用。该方法具有很高的特异性,可以作为一种新的无创癌症筛查和辅助诊断工具。通过早期发现癌症,有望改善犬类癌症的诊断和管理模式。
56 12
|
3月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
1314 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
548 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
3月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
1423 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
3月前
|
缓存 数据挖掘 测试技术
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
本文介绍了YOLO-Nano在目标检测中的训练、测试及验证步骤。YOLO-Nano是一个轻量级目标检测模型,使用ShuffleNet-v2作为主干网络,结合FPN+PAN特征金字塔和NanoDet的检测头。文章详细说明了训练前的准备、源代码下载、数据集准备、参数调整、模型测试、FPS测试、VOC-map测试、模型训练、模型测试和验证等步骤,旨在帮助开发者高效实现目标检测任务。
96 0
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
|
3月前
|
计算机视觉 异构计算
目标检测实战(四):YOLOV4-Tiny 源码训练、测试、验证详细步骤
这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。
353 0
|
4月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
4月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
11天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
106 74

热门文章

最新文章