【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)

简介: 【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第四章(多智能体开发)的第三篇笔记。主要是对课程刚开始环境搭建成功后跑通的第一个MetaGPT多智能体案例 - 多智能体辩论,进行学习,并拆解其中的实现步骤和原理。

系列笔记

多智能体辩论需求。假设是两个智能体进行辩论。

0. 辩论Action的定义

辩论进行的动作都一样,所以Action可以共用一个。除了 Prompt 需要费点功夫想,其它的流程都和之前一样,平平无奇。

class SpeakAloud(Action):
    """Action: Speak out aloud in a debate (quarrel)"""
    PROMPT_TEMPLATE: str = """
    ## BACKGROUND
    Suppose you are {name}, you are in a debate with {opponent_name}.
    ## DEBATE HISTORY
    Previous rounds:
    {context}
    ## YOUR TURN
    Now it's your turn, you should closely respond to your opponent's latest argument, state your position, defend your arguments, and attack your opponent's arguments,
    craft a strong and emotional response in 80 words, in {name}'s rhetoric and viewpoints, your will argue:
    """
    name: str = "SpeakAloud"
    async def run(self, context: str, name: str, opponent_name: str):
        prompt = self.PROMPT_TEMPLATE.format(context=context, name=name, opponent_name=opponent_name)
        # logger.info(prompt)
        rsp = await self._aask(prompt)
        return rsp

1. 辩论智能体的定义

智能体的职能也一样,所以可以共用一个Role的构造。

1.1 让两个智能体交替运行的重点

它的Action就是上面的辩论Action,通过 self.set_actions([SpeakAloud]) 设置。

它的动作时机通过 self._watch([UserRequirement, SpeakAloud]) 来设置,可以看到它观察环境中出现 UserRequirementSpeakAloud 来源的消息时,会有所动作。

那么问题来了,现在辩论的智能体Role和Action都只有一个,Role1说完之后放到环境中的信息来源是 SpeakAloud,Role2说完后放到环境中的也是 SpeakAloud,如果还是之前的代码,那当环境中出现 SpeakAloud时,Role1 和 Role2 都会触发动作了。这是不对的。

我们需要的是Role1等待Role2说完再说,Role2等待Role1说完后再说,交替着表达。

怎么实现这一点呢?回想我们之前学的单智能体的运行周期,_observe —> _react(_think + _act) —> publish_message,能阻止智能体不动作的是 _observe 函数。

1.2 重写 _observe 函数

先来看下原_observe函数的实现:

async def _observe(self, ignore_memory=False) -> int:
    """Prepare new messages for processing from the message buffer and other sources."""
    # Read unprocessed messages from the msg buffer.
    news = []
    if self.recovered:
        news = [self.latest_observed_msg] if self.latest_observed_msg else []
    if not news:
        news = self.rc.msg_buffer.pop_all()
    # Store the read messages in your own memory to prevent duplicate processing.
    old_messages = [] if ignore_memory else self.rc.memory.get()
    self.rc.memory.add_batch(news)
    # Filter out messages of interest.
    self.rc.news = [
        n for n in news if (n.cause_by in self.rc.watch or self.name in n.send_to) and n not in old_messages
    ]
    self.latest_observed_msg = self.rc.news[-1] if self.rc.news else None  # record the latest observed msg
    # Design Rules:
    # If you need to further categorize Message objects, you can do so using the Message.set_meta function.
    # msg_buffer is a receiving buffer, avoid adding message data and operations to msg_buffer.
    news_text = [f"{i.role}: {i.content[:20]}..." for i in self.rc.news]
    if news_text:
        logger.debug(f"{self._setting} observed: {news_text}")
    return len(self.rc.news)

它的结果 len(self.rc.news) 只要大于0,这个智能体就会执行 _react,开始行动。self.rc.news怎么来的?重点看源码中的这句:

# Filter out messages of interest.
self.rc.news = [
    n for n in news if (n.cause_by in self.rc.watch or self.name in n.send_to) and n not in old_messages
]

self.rc.news 是从 news 中过滤出了该智能体所关心的消息 n.cause_by in self.rc.watch 和 指定发送给该智能体的消息 self.name in n.send_to。而 news 其实就是 msg_buffermsg_buffer 来自环境的 publish_message

再来看下环境 publish_message 的代码:

def publish_message(self, message: Message, peekable: bool = True) -> bool:
        """
        Distribute the message to the recipients.
        In accordance with the Message routing structure design in Chapter 2.2.1 of RFC 116, as already planned
        in RFC 113 for the entire system, the routing information in the Message is only responsible for
        specifying the message recipient, without concern for where the message recipient is located. How to
        route the message to the message recipient is a problem addressed by the transport framework designed
        in RFC 113.
        """
        logger.debug(f"publish_message: {message.dump()}")
        found = False
        # According to the routing feature plan in Chapter 2.2.3.2 of RFC 113
        for role, addrs in self.member_addrs.items():
            if is_send_to(message, addrs):
                role.put_message(message)
                found = True
        if not found:
            logger.warning(f"Message no recipients: {message.dump()}")
        self.history += f"\n{message}"  # For debug
        return True

看里面的 is_send_to 函数:

def is_send_to(message: "Message", addresses: set):
    """Return whether it's consumer"""
    if MESSAGE_ROUTE_TO_ALL in message.send_to:
        return True
    for i in addresses:
        if i in message.send_to:
            return True
    return False

如果指定了 message.send_to,则环境只会将该消息发送给指定的Role

光看上面的代码和我的文字可能不是很好理解,容易绕晕,我给你们画了个图:

如上图的流程,这对于我们的辩论智能体来说其实就够了。Role1执行完动作后,将结果消息指定发送给Role2(通过message的send_to参数),这样Role1的msg_buffer中就不会出现它自身的这个消息,下次run时msg_buffer就直接是空的,就不运行了,等待Role2的消息。同样的,Role2执行完后将消息指定发送给Role1。这样就实现了交互行动,辩论的过程。

教程中用的0.6.6版本,不知道源码是不是这样。但是它为了实现这个辩论过程,还重写了 _observe 函数:

async def _observe(self) -> int:
    await super()._observe()
    # accept messages sent (from opponent) to self, disregard own messages from the last round
    self.rc.news = [msg for msg in self.rc.news if msg.send_to == {self.name}] # 第二次筛选
    return len(self.rc.news)

可以参考下。但是我用的0.7.2版本,看源码和实践证明,不用重写_observe了。

1.3 重写 _act 函数

这里为什么要重写 _act 函数,最主要的原因是要填执行完结果消息中的 send_to 参数(源码中是没有填的)。还有就是组装辩论的上下文(对手说了什么 context = "\n".join(f"{msg.sent_from}: {msg.content}" for msg in memories))。

async def _act(self) -> Message:
    logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
    todo = self.rc.todo  # An instance of SpeakAloud
    memories = self.get_memories()
    context = "\n".join(f"{msg.sent_from}: {msg.content}" for msg in memories)
    print(context)
    rsp = await todo.run(context=context, name=self.name, opponent_name=self.opponent_name)
    msg = Message(
        content=rsp,
        role=self.profile,
        cause_by=type(todo),
        sent_from=self.name,
        send_to=self.opponent_name,
    )
    self.rc.memory.add(msg)
    return msg

cause_by=type(todo), sent_from=self.name, send_to=self.opponent_name,

这三个参数分别是形容Message的内容属性,来自于哪个action以及角色,并要发送给哪个角色。通过这样的机制可以实现相较于watch更灵活的订阅机制。

给大家再看一下组装的上下文的示例,有个更直观的认识(Trump发言时,收到的上文是Biden及其之前发言的内容):

1.4 最终Role的代码

class Debator(Role):
    name: str = ""
    profile: str = ""
    opponent_name: str = ""
    def __init__(self, **data: Any):
        super().__init__(**data)
        self.set_actions([SpeakAloud])
        self._watch([UserRequirement, SpeakAloud])
  ## 0.7.2 版本可以不用重写 _observe,具体原因分析见上文
    # async def _observe(self) -> int:
    #     await super()._observe()
    #     # accept messages sent (from opponent) to self, disregard own messages from the last round
    #     self.rc.news = [msg for msg in self.rc.news if msg.send_to == {self.name}]
    #     return len(self.rc.news)
    async def _act(self) -> Message:
        logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
        todo = self.rc.todo  # An instance of SpeakAloud
        memories = self.get_memories()
        context = "\n".join(f"{msg.sent_from}: {msg.content}" for msg in memories)
        print(context)
        rsp = await todo.run(context=context, name=self.name, opponent_name=self.opponent_name)
        msg = Message(
            content=rsp,
            role=self.profile,
            cause_by=type(todo),
            sent_from=self.name,
            send_to=self.opponent_name,
        )
        self.rc.memory.add(msg)
        return msg

2. 实例化智能体

实例化两个智能体,Team组件的用法前面已经学习过,可参考我的上篇文章

其中值得注意的是,team.run_project(idea, send_to="Biden") 通过 send_to 参数指定谁先发言。

async def debate(idea: str, investment: float = 3.0, n_round: int = 5):
    """Run a team of presidents and watch they quarrel. :)"""
    Biden = Debator(name="Biden", profile="Democrat", opponent_name="Trump")
    Trump = Debator(name="Trump", profile="Republican", opponent_name="Biden")
    team = Team()
    team.hire([Biden, Trump])
    team.invest(investment)
    team.run_project(idea, send_to="Biden")  # send debate topic to Biden and let him speak first
    await team.run(n_round=n_round)

3. 完整代码及运行结果

完整代码:

import asyncio
import platform
from typing import Any
import fire
from metagpt.actions import Action, UserRequirement
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
from metagpt.team import Team
class SpeakAloud(Action):
    """Action: Speak out aloud in a debate (quarrel)"""
    PROMPT_TEMPLATE: str = """
    ## BACKGROUND
    Suppose you are {name}, you are in a debate with {opponent_name}.
    ## DEBATE HISTORY
    Previous rounds:
    {context}
    ## YOUR TURN
    Now it's your turn, you should closely respond to your opponent's latest argument, state your position, defend your arguments, and attack your opponent's arguments,
    craft a strong and emotional response in 80 words, in {name}'s rhetoric and viewpoints, your will argue:
    """
    name: str = "SpeakAloud"
    async def run(self, context: str, name: str, opponent_name: str):
        prompt = self.PROMPT_TEMPLATE.format(context=context, name=name, opponent_name=opponent_name)
        # logger.info(prompt)
        rsp = await self._aask(prompt)
        return rsp
class Debator(Role):
    name: str = ""
    profile: str = ""
    opponent_name: str = ""
    def __init__(self, **data: Any):
        super().__init__(**data)
        self.set_actions([SpeakAloud])
        self._watch([UserRequirement, SpeakAloud])
    # async def _observe(self) -> int:
    #     await super()._observe()
    #     # accept messages sent (from opponent) to self, disregard own messages from the last round
    #     self.rc.news = [msg for msg in self.rc.news if msg.send_to == {self.name}]
    #     return len(self.rc.news)
    async def _act(self) -> Message:
        logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")
        todo = self.rc.todo  # An instance of SpeakAloud
        memories = self.get_memories()
        context = "\n".join(f"{msg.sent_from}: {msg.content}" for msg in memories)
        print(context)
        rsp = await todo.run(context=context, name=self.name, opponent_name=self.opponent_name)
        msg = Message(
            content=rsp,
            role=self.profile,
            cause_by=type(todo),
            sent_from=self.name,
            send_to=self.opponent_name,
        )
        self.rc.memory.add(msg)
        return msg
async def debate(idea: str, investment: float = 3.0, n_round: int = 5):
    """Run a team of presidents and watch they quarrel. :)"""
    Biden = Debator(name="Biden", profile="Democrat", opponent_name="Trump")
    Trump = Debator(name="Trump", profile="Republican", opponent_name="Biden")
    team = Team()
    team.hire([Biden, Trump])
    team.invest(investment)
    team.run_project(idea, send_to="Biden")  # send debate topic to Biden and let him speak first
    await team.run(n_round=n_round)
def main(idea: str, investment: float = 3.0, n_round: int = 10):
    """
    :param idea: Debate topic, such as "Topic: The U.S. should commit more in climate change fighting"
                 or "Trump: Climate change is a hoax"
    :param investment: contribute a certain dollar amount to watch the debate
    :param n_round: maximum rounds of the debate
    :return:
    """
    if platform.system() == "Windows":
        asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
    asyncio.run(debate(idea, investment, n_round))
if __name__ == "__main__":
    fire.Fire(main("Topic: The U.S. should commit more in climate change fighting"))

运行结果(交替发言):

4. 总结

这节内容最主要的是让我们了解和实践了多智能体间更多的消息交互和订阅机制,主要是 send_to 参数的使用。

cause_by=type(todo), sent_from=self.name, send_to=self.opponent_name, 这三个参数分别是形容Message的内容属性,来自于哪个action以及角色,并要发送给哪个角色。通过这样的机制可以实现相较于watch更灵活的订阅机制。


站内文章一览

相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
99 9
|
19天前
|
人工智能 安全 JavaScript
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务
Open Interpreter 是一个让语言模型运行代码的强大工具,提供了一个类似 ChatGPT 的界面,支持多种编程语言和丰富的功能。
78 7
Open Interpreter:AI 赋能终端!在终端中对话AI模型进行编程,通过运行代码来完成各种计算机操作任务
|
26天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
21天前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
28天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
51 3
|
29天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
91 4
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
59 3
|
1月前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。