08【在线日志分析】之Flume Agent(聚合节点) sink to kafka cluster

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 1.创建logtopic[root@sht-sgmhadoopdn-01 kafka]# bin/kafka-topics.sh --create --zookeeper 172.

1.创建logtopic
[root@sht-sgmhadoopdn-01 kafka]# bin/kafka-topics.sh --create --zookeeper 172.16.101.58:2181,172.16.101.59:2181,172.16.101.60:2181/kafka --replication-factor 3 --partitions 1 --topic logtopic


2.创建avro_memory_kafka.properties (kafka sink)
[root@sht-sgmhadoopcm-01 ~]# cd /tmp/flume-ng/conf
[root@sht-sgmhadoopcm-01 conf]# cp avro_memory_hdfs.properties avro_memory_kafka.properties
[root@sht-sgmhadoopcm-01 conf]# vi avro_memory_kafka.properties
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 172.16.101.54
a1.sources.r1.port = 4545


# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = logtopic
a1.sinks.k1.kafka.bootstrap.servers = 172.16.101.58:9092,172.16.101.59:9092,172.16.101.60:9092
a1.sinks.k1.kafka.flumeBatchSize = 6000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
a1.sinks.ki.kafka.producer.compression.type = snappy


# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.keep-alive = 90
a1.channels.c1.capacity = 2000000
a1.channels.c1.transactionCapacity = 6000


# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1


3.后台启动 flume-ng agent(聚合节点)和查看nohup.out
[root@sht-sgmhadoopcm-01 ~]# source /etc/profile
[root@sht-sgmhadoopcm-01 ~]# cd /tmp/flume-ng/
[root@sht-sgmhadoopcm-01 flume-ng]# nohup  flume-ng agent -c conf -f /tmp/flume-ng/conf/avro_memory_kafka.properties  -n a1 -Dflume.root.logger=INFO,console &
[1] 4971
[root@sht-sgmhadoopcm-01 flume-ng]# nohup: ignoring input and appending output to `nohup.out'

[root@sht-sgmhadoopcm-01 flume-ng]#
[root@sht-sgmhadoopcm-01 flume-ng]#
[root@sht-sgmhadoopcm-01 flume-ng]# cat nohup.out


4.检查log收集的三台(收集节点)开启没
[hdfs@flume-agent-01 flume-ng]$ . ~/.bash_profile
[hdfs@flume-agent-02 flume-ng]$ . ~/.bash_profile
[hdfs@flume-agent-03 flume-ng]$ . ~/.bash_profile


[hdfs@flume-agent-01 flume-ng]$ nohup  flume-ng agent -c /tmp/flume-ng/conf -f /tmp/flume-ng/conf/exec_memory_avro.properties -n a1 -Dflume.root.logger=INFO,console &
[hdfs@flume-agent-01 flume-ng]$ nohup  flume-ng agent -c /tmp/flume-ng/conf -f /tmp/flume-ng/conf/exec_memory_avro.properties -n a1 -Dflume.root.logger=INFO,console &
[hdfs@flume-agent-01 flume-ng]$ nohup  flume-ng agent -c /tmp/flume-ng/conf -f /tmp/flume-ng/conf/exec_memory_avro.properties -n a1 -Dflume.root.logger=INFO,console &


5.打开kafka manager监控
http://172.16.101.55:9999

目录
相关文章
|
3月前
|
分布式计算 Java Hadoop
Hadoop-18 Flume HelloWorld 第一个Flume尝试!编写conf实现Source+Channel+Sink 控制台查看收集到的数据 流式收集
Hadoop-18 Flume HelloWorld 第一个Flume尝试!编写conf实现Source+Channel+Sink 控制台查看收集到的数据 流式收集
48 1
|
3月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
290 0
|
5月前
|
存储 数据采集 数据处理
【Flume拓扑揭秘】掌握Flume的四大常用结构,构建强大的日志收集系统!
【8月更文挑战第24天】Apache Flume是一个强大的工具,专为大规模日志数据的收集、聚合及传输设计。其核心架构包括源(Source)、通道(Channel)与接收器(Sink)。Flume支持多样化的拓扑结构以适应不同需求,包括单层、扇入(Fan-in)、扇出(Fan-out)及复杂多层拓扑。单层拓扑简单直观,适用于单一数据流场景;扇入结构集中处理多源头数据;扇出结构则实现数据多目的地分发;复杂多层拓扑提供高度灵活性,适合多层次数据处理。通过灵活配置,Flume能够高效构建各种规模的数据收集系统。
123 0
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
68 2
|
3月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
71 1
|
3月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
250 0
|
5月前
|
存储 分布式计算 大数据
【Flume的大数据之旅】探索Flume如何成为大数据分析的得力助手,从日志收集到实时处理一网打尽!
【8月更文挑战第24天】Apache Flume是一款高效可靠的数据收集系统,专为Hadoop环境设计。它能在数据产生端与分析/存储端间搭建桥梁,适用于日志收集、数据集成、实时处理及数据备份等多种场景。通过监控不同来源的日志文件并将数据标准化后传输至Hadoop等平台,Flume支持了性能监控、数据分析等多种需求。此外,它还能与Apache Storm或Flink等实时处理框架集成,实现数据的即时分析。下面展示了一个简单的Flume配置示例,说明如何将日志数据导入HDFS进行存储。总之,Flume凭借其灵活性和强大的集成能力,在大数据处理流程中占据了重要地位。
129 3
|
5月前
|
数据采集 存储 Apache
Flume核心组件大揭秘:Agent、Source、Channel、Sink,一文掌握数据采集精髓!
【8月更文挑战第24天】Flume是Apache旗下的一款顶级服务工具,专为大规模日志数据的收集、聚合与传输而设计。其架构基于几个核心组件:Agent、Source、Channel及Sink。Agent作为基础执行单元,整合Source(数据采集)、Channel(数据暂存)与Sink(数据传输)。本文通过实例深入剖析各组件功能与配置,包括Avro、Exec及Spooling Directory等多种Source类型,Memory与File Channel方案以及HDFS、Avro和Logger等Sink选项,旨在提供全面的Flume应用指南。
366 1
|
6月前
|
消息中间件 NoSQL Redis
实时计算 Flink版产品使用问题之配置了最大连续失败数不为1,在Kafka的精准一次sink中,如果ck失败了,这批数据是否会丢失
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
机器学习/深度学习 人工智能 算法
人工智能平台PAI 操作报错合集之pyalink 1.6.1StreamOperator.fromDataframe(out_df, out_schema_str)之后直接连kafka sink会报下面的错误如何解决
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。

热门文章

最新文章