[译][AI OpenAI-doc] 安全最佳实践

简介: 这篇文章总结了安全最佳实践,涵盖了使用免费 Moderation API 减少不安全内容频率的建议,对抗性测试的重要性,人在环路中审查输出的必要性,以及限制用户输入输出标记和允许用户报告问题的方法。文章强调了理解和沟通模型的限制的重要性,并提供了关于最终用户 ID 的建议。

使用我们的免费 Moderation API

OpenAI 的 Moderation API 是免费使用的,可以帮助减少您完成中不安全内容的频率。或者,您可能希望开发自己的内容过滤系统,以适应您的使用情况。

对抗性测试

我们建议对您的应用进行“红队测试”,以确保其对对抗性输入具有强大的韧性。测试您的产品在广泛范围的输入和用户行为下,包括代表性集合以及反映试图“破坏”您的应用的行为。它是否偏离了主题?是否有人可以轻易通过提示注入来重定向功能,例如“忽略之前的指令,改为执行这个”?

人在环路中 (HITL)

在可能的情况下,我们建议在实际使用之前由人类审查输出。这在高风险领域以及代码生成方面尤其关键。人类应该意识到系统的局限,并可以访问任何验证输出所需的信息(例如,如果应用程序总结笔记,则人类应该可以轻松访问原始笔记以供参考)。

提示工程

“提示工程”可以帮助限制输出文本的主题和语气。这可以减少产生不良内容的机会,即使用户试图产生它。向模型提供额外的上下文(例如,在输入新内容之前提供一些期望行为的高质量示例)可以更容易地引导模型输出到期望的方向。

“了解您的客户” (KYC)

用户通常需要注册并登录才能访问您的服务。将此服务与现有帐户(例如 Gmail、LinkedIn 或 Facebook 登录)关联可能会有所帮助,但对于所有用例可能并不适用。要求信用卡或身份证进一步降低了风险。

限制用户输入并限制输出标记

限制用户可以输入到提示中的文本量有助于避免提示注入。限制输出标记的数量有助于减少误用的机会。

缩小输入或输出范围,特别是来自可信来源的范围,可以降低应用程序内可能发生的误用程度。

通过经过验证的下拉字段允许用户输入(例如,维基百科上的电影列表)可能比允许开放式文本输入更安全。

在可能的情况下,从后端返回经过验证的一组材料的输出可能比返回新生成的内容更安全(例如,将客户查询路由到最匹配的现有客户支持文章,而不是尝试从头回答查询)。

允许用户报告问题

用户通常应该有一个易于获得的方法来报告关于应用程序行为的不当功能或其他关切(列出的电子邮件地址、提交票据的方法等)。这种方法应由人员监控,并根据情况予以回应。

了解并沟通限制

从产生错误信息、冒犯性输出、偏见等等,语言模型可能并不适合每个用例而不经过重大修改。考虑模型是否适合您的目的,并评估 API 在各种潜在输入中的性能,以确定 API 的性能可能下降的情况。考虑您的客户群体及其将使用的输入范围,并确保他们的期望得到适当的调整。

安全性和保障对我们在 OpenAI 的重要性不言而喻。

如果在开发过程中您注意到 API 或与 OpenAI 相关的任何其他内容存在任何安全问题或安全问题,请通过我们的协调漏洞披露计划提交这些问题。

最终用户 ID

在您的请求中发送最终用户 ID 可以是一个有用的工具,帮助 OpenAI 监控和检测滥用行为。这样,OpenAI 在检测到您的应用程序中存在任何政策违规时,可以为您的团队提供更具操作性的反馈。

这些 ID 应该是一个字符串,唯一标识每个用户。我们建议对其用户名或电子邮件地址进行哈希处理,以避免向我们发送任何识别信息。如果您向非登录用户提供产品预览,您可以发送会话 ID。

您可以通过以下方式在 API 请求中包含最终用户 ID:

from openai import OpenAI
client = OpenAI()

response = client.completions.create(
  model="gpt-3.5-turbo-instruct",
  prompt="This is a test",
  max_tokens=5,
  user="user_123456"
)

相关文章
|
7天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
112 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
2天前
|
存储 人工智能 NoSQL
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
24 12
|
2天前
|
存储 人工智能 Kubernetes
MiniMax云上AI数据湖最佳实践
本简介介绍MiniMax云上AI数据湖的最佳实践。MiniMax成立于2021年,专注于通用人工智能领域,提供ToB和C端产品。面对每日3万亿token、2000万张图片及7万小时语音数据的处理需求,MiniMax基于阿里云构建了稳定灵活的基础设施,采用多云策略实现全球化部署。通过引入Kubernetes、Ray等技术,优化了多模态数据处理效率,并利用对象存储与数据湖技术降低成本。此外,与阿里云合作开发边缘缓存方案,提升跨地域数据传输效率。主讲人:阿里云弹性计算技术专家高庆端。
23 10
|
3天前
|
人工智能 供应链 安全
阿里云 Confidential AI 最佳实践
本次分享的主题是阿里云 Confidential AI 最佳实践,由阿里云飞天实验室操作系统安全团队工程师张佳分享。主要分为三个部分: 1. Confidential AI 技术背景与挑战 2. Confidential AI 技术架构与应用场景 3. Confidential AI 技术实践与未来展望
|
3天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
|
17天前
|
人工智能 关系型数据库 分布式数据库
PolarDB-PG AI最佳实践3 :PolarDB AI多模态相似性搜索最佳实践
本文介绍了如何利用PolarDB结合多模态大模型(如CLIP)实现数据库内的多模态数据分析和查询。通过POLAR_AI插件,可以直接在数据库中调用AI模型服务,无需移动数据或额外的工具,简化了多模态数据的处理流程。具体应用场景包括图像识别与分类、图像到文本检索和基于文本的图像检索。文章详细说明了技术实现、配置建议、实战步骤及多模态检索示例,展示了如何在PolarDB中创建模型、生成embedding并进行相似性检索
|
17天前
|
SQL 人工智能 关系型数据库
PolarDB-PG AI最佳实践 2 :PolarDB AI X EAS实现自定义库内模型推理最佳实践
PolarDB通过POLAR_AI插件支持使用SQL调用AI/ML模型,无需专业AI知识或额外部署环境。结合阿里云EAS在线模型服务,可轻松部署自定义模型,在SQL中实现如文本翻译等功能。
|
21天前
|
机器学习/深度学习 人工智能 安全
阿里云先知安全沙龙(武汉站) ——AI赋能软件漏洞检测,机遇, 挑战与展望
本文介绍了漏洞检测的发展历程、现状及未来展望。2023年全球披露的漏洞数量达26447个,同比增长5.2%,其中超过7000个具有利用代码,115个已被广泛利用,涉及多个知名软件和系统。文章探讨了从人工审计到AI技术的应用,强调了数据集质量对模型性能的重要性,并展示了不同检测模型的工作原理与实现方法。此外,还讨论了对抗攻击对模型的影响及提高模型可解释性的多种方法,展望了未来通过任务大模型实现自动化漏洞检测与修复的趋势。
|
19天前
|
存储 人工智能 运维
AI + 可观测最佳实践:让业务从“看见”到“洞察”
本文介绍了AI Ops的概念及其在提升系统运维效率、洞察力和可观测性方面的作用。主要内容分为三个部分:一是监控、观测与洞察的区别及挑战,强调了数据整合和语义对齐的重要性;二是AI与计算如何重塑可观测性,通过UModel数字图谱和多模态存储分析架构实现数据联通;三是最佳实践与未来展望,展示了阿里云AI Stack可观测解决方案的应用案例,并总结了可观测性的四个发展阶段,最终愿景是借助AI力量让每个人成为多领域的专家。
|
17天前
|
存储 数据采集 算法
构建AI数据管道:从数据到洞察的高效之旅最佳实践
本文探讨了大模型从数据处理、模型训练到推理的全流程解决方案,特别强调数据、算法和算力三大要素。在数据处理方面,介绍了多模态数据的高效清洗与存储优化;模型训练中,重点解决了大规模数据集和CheckPoint的高效管理;推理部分则通过P2P分布式加载等技术提升效率。案例展示了如何在云平台上实现高性能、低成本的数据处理与模型训练,确保业务场景下的最优表现。