阿里云 Flink 原理分析与应用:深入探索 MongoDB Schema Inference

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文整理自阿里云 Flink 团队归源老师关于阿里云 Flink 原理分析与应用:深入探索 MongoDB Schema Inference 的研究。

本文整理自阿里云 Flink 团队归源老师关于阿里云 Flink 原理分析与应用:深入探索 MongoDB Schema Inference 的研究,内容主要分为以下四部分:

  1. MongoDB 简介
  2. 社区MongoDB CDC 核心特性
  3. MongoDB CDC 在阿里云 Flink 实时计算产品的实践
  4. 总结

一、MongoDB 简介

MongoDB 是一种面向文档的非关系型数据库,支持半结构化数据存储;也是一种分布式的数据库,提供副本集和分片集两种集群部署模式,具有高可用和水平扩展的能力,比较适合大规模的数据存储。

MongoDB 使用了弱结构化的存储模式,支持灵活的数据结构和丰富的数据类型,适合 Json 文档、标签、快照、地理位置、内容存储等业务场景。它天然的分布式架构提供了开箱即用的分片机制和自动 rebalance 能力,适合大规模数据存储。另外, MongoDB 还提供了分布式网格文件存储的功能,即 GridFS,适合图片、音频、视频等大文件存储。

二、社区 MongoDB CDC 核心特性

Flink CDC 是基于数据库的日志 CDC(Change Data Capture)技术,实现了全量和增量的一体化读取能力,借助 Flink 优秀的管道能力和丰富的上下游生态,支持实时捕获、加工多种数据的变更并输出到下游,MongoDB 也是支持的数据库之一,支持的主要特性包括:

  • 支持 Exactly-once 语义
  • 支持全量、增量订阅
  • 支持 Snapshot 数据过滤
  • 支持从检查点、保存点恢复
  • 支持元数据提取

社区 MongoDB CDC 使用了 MongoDB 3.6推出的 Change Streams特性,通过将 Change Streams 转换成 Flink Upsert changelog,实现了 MongoDB CDC TableSource。在 MongoDB 6.0 之前的版本中,默认不会提供变更前文档及被删除文档的数据,利用这些信息只能实现下图所示的 Upsert 语义。

MongoDB 6.0 的 Pre- and Post-Image 新功能提供了一个更高效的解决方案:只要启用changeStreamPreAndPostImages功能,MongoDB 就会在每次变更发生时,在一个特殊的集合中记录文档变更前后的完整状态。MongoDB CDC 支持读取这些记录并产生完整事件流,从而消除了对 ChangelogNormalize 节点的依赖,该功能在社区和阿里云实时计算Flink产品中均可以支持。

三、MongoDB CDC 在阿里云 Flink 实时计算产品的实践

社区的 MongoDB CDC 作为纯引擎,功能已经十分强大。但作为商业化产品,目前仍然存在着不足之处,即无法支持 Schema 变更。

MongoDB 作为 NoSQL 数据库,没有固定的 Schema 要求,Schema 的变更操作十分常见,但目前社区 MongoDB CDC 只能支持固定 Schema,并且无法支持 Schema 变更。同时社区 MongoDB CDC 需要用户手动定义表的 Schema,在使用上也不够便捷。

为了解决上述不足之处,阿里云 Flink 实时计算产品提供了 MongoDB Catalog,支持 MongoDB 的 Schema 推导,无需手动定义 Schema。并且通过 CTAS/CDAS 语句,能够做到在实时同步 MongoDB 数据的同时将上游表结构(Schema)的变更同步到下游表,提高了建表和维护表结构变更的效率。

1.Schema 推导的实现

MongoDB Schema 推导通过 MongoDB Catalog 实现,MongoDB Catalog 会推导出 collection 的 schema,无需手动指定 DDL 即可作为 Flink 源表、维表或结果表使用。Schema 推导的流程包括以下步骤:

1.1 数据采样

MongoDB Catalog 会从 Collection 中采样默认 100 条文档数据,若 Collection 中文档数小于该值,则会获取其中的所有数据。

采样数据量可以通过 MongoDB Catalog 提供的配置项 max.fetch.records 进行设置。

1.2 Schema 解析

在 MongoDB 中,每个 Document 都是一个 BSON 文档。与 JSON 相比,BSON 类型是 JSON 类型的超集,相比 JSON 额外支持了 DateTime、Binary 等类型。在解析单个 BSON 文档的 Schema 时,BSON 类型会与 Flink SQL 类型进行一一对应。对于 BSON 文档中嵌套的 Document 类型,默认会将其解析为 STRING。

为了能够更好地解析嵌套的 Document 类型,MongoDB Catalog提供了 scan.flatten-nested-columns.enabled 配置项,可以用于递归地解析 Document 类型中的字段。假设初始的 BSON 文档如下:

{
  "unnested": "value",
  "nested": {
    "col1": 99,
    "col2": true
  }
}

如果将 scan.flatten-nested-columns.enabled 设为 false(默认),得到的 Schema 会包含 2 列:

列名 Flink SQL类型
unnested STRING
nested STRING

如果将 scan.flatten-nested-columns.enabled 设为 true,得到的 Schema 则会包含 3 列:

列名 Flink SQL类型
unnested STRING
nested.col1 INT
nested.col2 BOOLEAN

除此之外,MongoDB Catalog 还提供了 scan.primitive-as-string 配置项,可以将所有 BSON 基本类型都映射为 STRING。

1.3 Schema 合并

当获取到一组 BSON 文档数据后,MongoDB Catalog 会逐条解析 BSON 文档,并按如下规则合并解析出的物理列,最终得到的 Schema 会作为整个 Collection 的 Schema。合并规则如下:

  • 如果当前 BSON 文档解析出的物理列中包含结果 Schema 中没有的字段,则 MongoDB Catalog 会自动将这些字段加入到结果 Schema。

  • 如果当前 BSON 文档解析出的物理列和结果 Schema 出现了同名列,若类型不同,则会按下图的树形结构找到最近公共父节点,作为该同名列的类型。

例如,对于包含如下三条数据的 Collection:

{
  "_id": {
    "$oid": "100000000000000000000101"
  },
  "name": "Alice",
  "age": 10,
  "phone": {
    "mother": "111",
    "fatehr": "222"
  }
}

{
  "_id": {
    "$oid": "100000000000000000000102"
  },
  "name": "Bob",
  "age": 20,
  "phone": {
    "mother": "333",
    "fatehr": "444"
  }
  "address": ["Shanghai"],
  "desc": 1024
}

{
  "_id": {
    "$oid": "100000000000000000000103"
  },
  "name": "John",
  "age": 30,
  "phone": {
    "mother": "555",
    "fatehr": "666"
  }
  "address": ["Shanghai"],
  "desc": "test value"
}

对于以上 3 个 BSON 文档,后两个相比第一个多了 address 和 desc 字段,这两个字段在做 Schema 合并时会合并到最终 Schema 中。后两个文档的 desc 字段类型不同,在解析单个文档的 Schema 时,会将这两个字段分别映射为 Flink SQL 类型的 INT 和 STRING,根据上述 Schema 合并时类型合并规则,最终 desc 字段类型会被推导为 STRING。

因此,MongoDB Catalog 最终得到的 Schema 如下:

列名 Flink SQL类型 备注
_id STRING NOT NULL 主键字段
name STRING
age INT
phone STRING
address STRING
desc STRING 类型合并为STRING

在 MongoDB 中,每个文档都有一个特殊的字段 _id,它用于唯一标识集合(collection)中的一个文档,这个字段在文档创建时会自动生成。

MongoDB Catalog 会把 _id 列作为主键,添加默认的主键约束,确保数据不会重复。

2. Schema Evolution 的实现

在将 MongoDB Catalog 中的表作为 CDC source 使用时,考虑到 Collection 中的数据可能会出现新增字段、更改字段类型等 Schema 变更操作,connector 在处理数据时需要考虑到 Schema evolution。

MongoDB CDC connector 会将 MongoDB Catalog 推导出的 Schema 作为初始 Schema,后续在每读到一条 OpLog 操作日志数据时,操作步骤如下:

  1. 解析当前数据对应 BSON 文档的 Schema,步骤与上文 BSON 文档 Schema 解析中相同
  2. 将步骤 1 中解析出的 Schema 与当前 Schema 合并
  3. 比较步骤 2 中合并后的 Schema 与当前 Schema:
  • 若相同,则使用当前 Schema 解析数据
  • 若不同,则更新当前 Schema,并下发 Schema 变更信息

3. 通过 CTAS/CDAS 语句同步数据和表结构

CTAS 语句支持同步源表的全量和增量数据到结果表中,在同步数据的同时,能够将源表的表结构变更也实时同步到结果表。CDAS 语句支持整库级别的数据实时同步,也能够支持表结构变更的同步。

在使用 CTAS/CDAS 语句同步数据之前,需要先创建 MongoDB Catalog:

CREATE CATALOG <yourcatalogname> WITH(
  'type'='mongodb',
  'default-database'='<dbName>',
  'hosts'='<hosts>',
  'scheme'='<scheme>',
  'username'='<username>',
  'password'='<password>',
  'connection.options'='<connectionOptions>',
  'max.fetch.records'='100',
  'scan.flatten-nested-columns.enable'='<flattenNestedColumns>',
  'scan.primitive-as-string'='<primitiveAsString>'
);

示例如下:

在创建 MongoDB Catalog 后,可以选择如下几种方式实现数据和表结构的同步:

3.1 使用 CTAS 语句同步单个 MongoDB Collection 数据和表结构到下游存储

CREATE TABLE IF NOT EXISTS `${target_table_name}`
WITH(...)
AS TABLE `${mongodb_catalog}`.`${db_name}`.`${collection_name}`
/*+ OPTIONS('scan.incremental.snapshot.enabled'='true') */;

示例如下:

3.2 使用多个 CTAS 语句同时同步多个 MongoDB Collection 数据和表结构到下游存储

BEGIN STATEMENT SET;

CREATE TABLE IF NOT EXISTS `some_catalog`.`some_database`.`some_table0`
AS TABLE `mongodb-catalog`.`database`.`collection0`
/*+ OPTIONS('scan.incremental.snapshot.enabled'='true') */;

CREATE TABLE IF NOT EXISTS `some_catalog`.`some_database`.`some_table1`
AS TABLE `mongodb-catalog`.`database`.`collection1`
/*+ OPTIONS('scan.incremental.snapshot.enabled'='true') */;

CREATE TABLE IF NOT EXISTS `some_catalog`.`some_database`.`some_table2`
AS TABLE `mongodb-catalog`.`database`.`collection2`
/*+ OPTIONS('scan.incremental.snapshot.enabled'='true') */;

END;

示例如下:

3.3 使用 CDAS 同步 MongoDB 数据库中符合条件的 Collection 数据和表结构到下游存储

CREATE DATABASE IF NOT EXISTS `some_catalog`.`some_database` 
AS DATABASE `mongo-catalog`.`database` INCLUDING TABLE 'table-name'
/*+ OPTIONS('scan.incremental.snapshot.enabled'='true') */;

示例如下:

4. 使用示例

(以下示例使用的环境为阿里云实时计算 Flink 版

假设我们需要同步 MongoDB 中单个数据库下所有 Collection 的数据和表结构到 Hologres,MongoDB 中数据可能出现新增字段。

MongoDB 的数据库名称为 guiyuan_cdas_test,其中包含了两个 collection,名称分别为 test_coll_0 和 test_coll_1,我们希望将数据同步到 Hologres 的同名数据库 cdas_test 中。

MongoDB 中两个 collection 的初始数据如下:

创建 MongoDB 和 Hologres 的 Catalog 后,在 SQL 开发页面编写 CDAS 作业,由于 MongoDB Catalog 会对 collection 做 Schema 推导,此处不需要手动定义表的 DDL:

部署运行后,可以看到 Hologres 数据库中已经自动创建了 guiyuan_cdas_test 数据库,并且同步了两个表的初始数据:

此时,向 MongoDB 的 test_coll_0 中插入一条包含了新字段 address 的数据,同时向 test_coll_1 中插入一条包含了新字段 phone 的数据。

此时观察 Hologres 表,可以看到两个表都已经同步了新的数据和表结构:

四. 总结

Flink CDC 基于 MongoDB 的 Change Streams 实现了 MongoDB CDC Source,支持了 MongoDB 的全增量一体化数据同步。在此基础上,阿里云实时计算 Flink 通过 MongoDB Catalog 实现了 MongoDB Schema 推导,配合 CTAS/CDAS 语句,可以在同步数据的同时支持表结构变更的同步,当 Schema 发生变更时,无需修改 Flink 作业即可同步到下游存储,极大地提升了数据集成的灵活性和便利性。


Flink Forward Asia 2023

本届 Flink Forward Asia 更多精彩内容,可微信扫描图片二维码观看全部议题的视频回放及 FFA 2023 峰会资料!


更多内容

img


活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算 Flink 版现开启活动:
0 元试用 实时计算 Flink 版(5000CU*小时,3 个月内)
了解活动详情:https://free.aliyun.com/?pipCode=sc

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
100 5
|
19天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
77 14
|
1月前
|
人工智能 NoSQL MongoDB
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
563 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
1月前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
|
3月前
|
存储 NoSQL MongoDB
基于阿里云数据库MongoDB版,微财数科“又快又稳”服务超7000万客户
选择MongoDB主要基于其灵活的数据模型、高性能、高可用性、可扩展性、安全性和强大的分析能力。
|
3月前
|
NoSQL 关系型数据库 分布式数据库
凭安征信携手阿里云PolarDB和MongoDB,挖掘信用背后的数据金矿
PolarDB和MongoDB共同支撑凭安征信的全量数据需求
|
3月前
|
NoSQL MongoDB 数据库
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
|
3月前
|
存储 NoSQL MongoDB
小川科技携手阿里云数据库MongoDB:数据赋能企业构建年轻娱乐生态
基于MongoDB灵活模式的特性,小川实现了功能的快速迭代和上线,而数据库侧无需任何更改
|
3月前
|
运维 NoSQL BI
简道云搭载阿里云MongoDB数据库,帮助数以万计企业重构业务系统
通过与MongoDB和阿里云团队的合作,让简道云少走了弯路,保障了线上服务的长期稳定运行,提高了吞吐效率,并相应降低了线上运行成本

相关产品

  • 实时计算 Flink版