基于QwQ-32B+Hologres+PAI搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于QwQ大模型的RAG服务,并关联Hologres引擎实例。Hologres与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。通过PAI-EAS,用户可以一键部署集成大语言模型(LLM)和检索增强生成(RAG)技术的对话系统服务,显著缩短部署时间并提升问答质量。具体步骤包括准备Hologres向量检索库、部署RAG服务、通过WebUI页面进行模型推理验证及API调用验证。Hologres支持高性能向量计算,适用于复杂任务的动态决策,帮助克服大模型在领域知识局限、信息更新滞后和误导性输出等方面的挑战。
Hologres × PAI × DeepSeek 搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于DeepSeek大模型的RAG(检索增强生成)服务,并关联Hologres引擎实例。Hologres与阿里云自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时的向量计算能力。通过PAI-EAS,用户可以一键部署集成了大语言模型和RAG技术的对话系统服务,显著缩短部署时间,并提高问答质量。部署步骤包括准备Hologres向量检索库、部署基于DeepSeek的RAG服务、通过WebUI进行模型推理验证,以及通过API调用进行模型推理验证。Hologres还提供了特色功能支持,如高性能向量计算等。
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
降价46%,Hologres Serverless Computing 快速入门
Hologres Serverless Computing 通过资源负载隔离和动态分配,提高查询速度并降低成本。2025年1月20日起,北京、上海、杭州、深圳四地的 Hologres Serverless Computing 价格从0.66元/CUH降至0.3542元/CUH。该技术在阿里集团内部每天使用超过2万Core,综合内存水位下降50%,成本节约20%-30%。Serverless Computing 提供灵活性、可扩展性、成本效益等优势,适用于大SQL作业频繁OOM、流量高峰期资源紧张等场景,助力用户实现高效、稳定的计算资源管理。
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
实时数仓 Hologres 产品介绍:一体化实时湖仓平台
本次方案的主题是实时数仓 Hologres 产品介绍:一体化实时湖仓平台,介绍了 Hologres 湖仓存储一体,多模式计算一体、分析服务一体和 Data+AI 一体四方面一体化场景,并对其运维监控方面及客户案例进行一定讲解。
1. Hologres :面向未来的一体化实时湖仓
2. 运维监控
3. 客户案例
4. 总结