背景
最近AI行业的发展真是日新月异,自年初以来ChatGPT的火爆,几乎每隔几天都被各种新产品发布刷屏,从GPT-4、文心一言到Microsoft 365 Copilot、Github Copilot X、ChatGPT Plugin等等。AI正在掀起一场新的生产力革命,以集成了AI能力的Office和Github为例,仅仅使用简单的语言进行描述就能在Word中轻松生成初稿和总结,在Excel中自动分析关键趋势并创建数据模型可视化等操作,在PPT中快速制作出漂亮的演示文稿。AI还可以通过分析注释,函数名,上下文,基于分析结果给出自动补全建议、函数和方法调用、甚至是完整的代码段。对于那种常年无人维护的项目,还能帮助你分析,生成文档,编写注释。从此程序员悖论——程序员最讨厌的两件事:“别人不写文档”以及“写文档”,今天终于被AI彻底解决了。
因此,老板想我蹭一把热度——将Lindorm AI 引擎光速对AIGC相关模型适配,然后写个文章,一开始我是拒绝的,蹭热点不是我这种务实又进取的程序员的风格,但看我余额为0的钱包还是不得不开工。
既然介绍AIGC ,那我把老板需求提给ChatGPT应该不过分吧。
这不是写的比我还好!火速化身为CV工程师 (Ctrl+C 和 Ctrl+V) 把文档转发给老板不就完事了。
老板说小伙子不错啊,让你调研AIGC不是让你当需求路由器呀。你得把最新最牛逼的产品让读者知道AIGC具体是个啥玩意,ChatGPT知识比较落后,还得靠你亲自调研。
好吧让我看看最近营销号什么东东火,就是你了Midjourney v5。
prompt:
A pair of young Chinese lovers, wearing jackets and jeans, sitting on the roof, the background is Beijing in the 1990s, and the opposite building can be seen —v 5 —s 250 —q 2.
这幅作品是由Midjourney推出,由人工智能(AI)生成的“中国情侣”图片在国内外社交媒体上广为传播。这幅作品逼真的视觉效果让很多网友惊叹,认为“AI已经不逊于人类画师了”。该工具是继GPT-4之后又一个备受关注的AI产品。(聪明的你肯定猜到了,这句话又是ChatGPT生成。)只需要在Midjourney中输入上面这段英文prompt,就可以生成这张图片,是不是很酷炫!
AIGC与数据库
AIGC这么好用,还不赶紧做个APP玩一玩,万一火了,搞个公司上市,走上人生巅峰,指日可待。不过,对于我这种小白程序员,只会写前端和SQL,对这些模型又不太了解,更别说还要部署复杂的服务架构。该咋办呢?
来了来了,Lindorm AI 引擎它来了,使用Lindorm AI 引擎的In-DB Inference功能,仅仅需要写几句SQL,就能在数据库内完成模型部署和推理,省去一系列安装部署步骤,快速搭建起一个AIGC应用。那么什么是Lindorm AI引擎, 什么是In-DB Inference呢,具体的操作方法是什么呢?
Lindorm AI 引擎
Lindorm是面向互联网、物联网中的海量非事务数据设计和优化的云原生多模数据库,支持结构化、半结构化、非结构化数据的统一存储和计算,提供宽表、时序、时空、对象、流等多种处理模型,并兼容多种开源标准接口和无缝集成三方生态工具,满足车联网、自动驾驶、监控、推荐、风控、账单、工业互联网等业务场景的需求。
Lindorm AI 引擎是Lindorm最新推出的支持在数据库内集成 AI 能力对非结构化数据进行智能分析和处理的引擎,结合Lindorm已有的对结构化和半结构化数据的分析和处理能力,这使得多模数据的融合分析成为可能。伴随着 AI 模型生态的逐渐成熟,如框架、格式逐渐收敛统一,以及一些开源模型平台(如ModelScope、HuggingFace)的出现,让一些常用的模型唾手可得,可以预见到未来更多的需求是直接使用这些预训练模型对数据进行推理,或微调,而不是从头训练一个新的模型。为此,Lindorm AI 引擎即将推出BYOM(Bring Your Own Model)功能,支持导入预训练模型在数据库内直接进行推理的能力,就是In-DB Inference功能。
Lindorm AI 引擎支持用户自己上传预训练模型到数据库中,也支持直接从开源模型平台(包括ModelScope、HuggingFace)导入模型的功能,用户无需下载模型就可以很方便地完成模型在 Lindorm 内的部署和推理。Lindorm AI 引擎会根据用户指定的模型平台上的模型路径,自动下载模型并针对Lindorm AI 引擎使用的推理节点硬件对其进行适当的优化,以达到最佳的运行效率。
Lindorm AI In-DB Inference使用介绍
Lindorm AI In-DB Inference功能的使用非常简单,首先用户通过一个CREATE MODEL的SQL在数据库中导入模型,指定模型在数据库中或ModelScope/HuggingFace中的路径,以及对应的CV、NLP任务等信息。然后就可以使用一个SQL函数指定刚刚导入的模型使用数据库中的数据作为输入进行推理。