《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(1)

简介: 《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(1)

作者:郭育波


用户背景

众安在线财产保险股份有限公司(以下简称“众安”)是中国首家互联网保险公司,众安总部位于上海,不设任何分支机构,完全通过互联网展业。由“保险+科技”双引擎驱动,众安专注于应用新技术重塑保险价值链,围绕健康、数字生活、消费金融、汽车四大生态,以科技服务新生代,为其提供个性化、定制化、智能化的新保险。  


平台概况

image.png

上图是众安保险的实时计算整体架构图,最下层是数据源层,包括了来自于应用系统的业务数据、应用系统的消息数据、用户行为埋点数据以及应用日志数据,这些数据都会经过 Flink 进入实时数仓。  


实时数仓分为四层:  


第一层是 ODS 层,数据经过 Flink 到 ODS 层后会关联一张原始表,这个表是和数据源一一对应的,然后会有一个视图表对原始数据进行简单的清洗加工;


数据经过 Flink 下发到 DWD 层,DWD 层是基于主题域进行划分的,我们现在划分为用户数据域、营销数据域、信贷数据域和保险数据域等;另外还有一部分是 DIM 层,包含用户相关、产品相关和渠道相关等维表数据,DIM 层的数据会保存到 HBase 中;


经过 DWD 层的数据清洗之后,数据下发到 DWS 层,DWS 层会对数据进行整合汇总,一般会有指标宽表和多维明细宽表;


最后这些数据会进入 ADS 层,服务具体多样的数据应用。这一层包含多样的 OLAP 数据存储引擎,包括使用 ClickHouse 作为大盘实时报表的存储引擎,使用HBase 和阿里云的 TableStore 为用户标签和特征工程提供数据存储服务,以及使用ES服务实时监控场景。

image.png

上图是众安保险的实时计算平台架构图。在任务管理模块里面编辑和提交任务,任务编辑器同时支持 Flink SQL 和 Flink JAR 任务,提供了比较便利的 Flink SQL 编辑功能和调试功能,也支持多种任务启动策略,比如基于 checkpoint、offset、时间点和最早位置等,还支持定时和即时生成 checkpoint 功能。任务提交之后,会通过 Flink 客户端将它提交到我们自建的 CDH 集群里。任务管理服务也会定时从 Yarn 获取任务的实时状态。


监控方面,Flink 会把指标日志数据推送到 PushGateway,Prometheus 获取 PushGateway 这些指标之后会在 Grafana 进行数据的可视化展示。除了对任务异常的状态监控之外,众安还会对资源使用率、消息积压等多种情况进行实时告警。此外 Flink 还支持了比较多的 connector,比如阿里云的 ODPS、TableStore 和 Hologres,也内置了丰富的 UDF 并且支持用户自定义 UDF。









相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
788 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1911 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
5月前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
446 8
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
700 6
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
586 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
6月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
6月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
6月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多