运筹优化学习10:分支定界算法求解整数规划问题及其Matlab实现(下)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 运筹优化学习10:分支定界算法求解整数规划问题及其Matlab实现

3.3 C++伪代码

// C++实现分支定界算法的伪代码 
// 函数功能:我们要求一个最小化问题的最优解
//输入参数:problem            组合优化问题
//        objective_function    目标函数值
//        lower_bound_function    问题的下界
CombinatorialSolution branch_and_bound_solve(
    CombinatorialProblem problem, 
    ObjectiveFunction objective_function /*f*/,
    BoundingFunction lower_bound_function /*g*/) 
{
    // Step 1 above
    double problem_upper_bound = std::numeric_limits<double>::infinity; // = B,设置正无穷无穷对问题的上界进行初始化
    CombinatorialSolution heuristic_solution = heuristic_solve(problem); // x_h,启发式算法得到初始解
    problem_upper_bound = objective_function(heuristic_solution); // B = f(x_h),将启发式算法得到的解作为问题的上界
    CombinatorialSolution current_optimum = heuristic_solution;//设置启发算法的解为当前最优解
    // Step 2 above
    queue<CandidateSolutionTree> candidate_queue;
    // problem-specific queue initialization
    candidate_queue = populate_candidates(problem);
    while (!candidate_queue.empty()) { // Step 3 above
        // Step 3.1
        CandidateSolutionTree node = candidate_queue.pop();
        // "node" represents N above
        if (node.represents_single_candidate()) {
        // Step 3.2 如果node是一个候选解,判断其是否小于当前上界,若是则更新上界;否则他就不是最优解,就要停止分支
            if (objective_function(node.candidate()) < problem_upper_bound) {
                current_optimum = node.candidate();
                problem_upper_bound = objective_function(current_optimum);
            }
            // else, node is a single candidate which is not optimum
        }
        else { 
            // Step 3.3: node represents a branch of candidate solutions
            // "child_branch" represents N_i above
            for (auto&& child_branch : node.candidate_nodes) {
                if (lower_bound_function(child_branch) <= problem_upper_bound) {
                    candidate_queue.enqueue(child_branch); // Step 3.3.2
                }
                // otherwise, g(N_i) > B so we prune the branch; step 3.3.1
                //如果得到一个更差的解,我们就放弃该分支
            }
        }
    }
    return current_optimum;
}

4 一个Matlab的实现示例

4.1 linprog函数使用详解

这里调用了Matlab的linprog函数,完整的函数说明文档可在Matlab中输入如下指令:

doc linprog


得到如下界面:

20191011230150688.png

可知,该函数可以求解线性规划问题,设计到的参数说明:

image.png

image.png

其中的options参数:

20191011230633601.png

exitflag参数:

image.png

4.2 一个Matlab求解的代码示例解析

分支定界函数

function [x,val]=kfz(n,f,a,b,aeq,beq,lb,ub)
%获取变量个数的向量
x=zeros(n,1);
% x1=zeros(n,1);
m1=2;
m2=1;
%嗲用lingprog得到线性规划问题的最优解
[x1,val1]=linprog(f,a,b,aeq,beq,lb,ub)
if (x1==0)
    x=x1;
    val=val1
elseif (round(x1)==x1)%线性问题的最优解都是整数,则它也是原问题的最优解
    x=x1;
    val=val1
else
    e1={0,a,b,aeq,beq,lb,ub,x1,val1};
    e(1,1)={e1};
zl=0;
zu=-val1
while (zu~=zl)
for c=1:1:m2
if (m1~=2)
if (cell2mat(e{m1-1,c}(1))==1)
e1={1,[],[],[],[],[],[],[],0};
e(m1,c*2-1)={e1};
e(m1,c*2)={e1};
continue;
end;
end;
x1=cell2mat(e{m1-1,c}(8));
x2=zeros(n,1);
s=0;
s1=1;
s2=1;
lb1=cell2mat(e{m1-1,c}(6));
ub1=cell2mat(e{m1-1,c}(7));
lb2=cell2mat(e{m1-1,c}(6));
ub2=cell2mat(e{m1-1,c}(7));
for d=1:1:n
if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0)
s=1;
lb1(d)=fix(x1(d))+1
if (a*lb1<=b)
s1=0;
end;
ub2(d)=fix(x1(d))
if (a*lb2<=b)
s2=0;
end;
end;
end;
e1={s1,a,b,aeq,beq,lb1,ub1,[],0};
e2={s2,a,b,aeq,beq,lb2,ub2,[],0};
e(m1,c*2-1)={e1};
e(m1,c*2)={e2};
end;
m1=m1+1;
m2=m2*2;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0)
[x1,val1]=linprog(f,cell2mat(e{m1-1,c}( 2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)));
e1={cell2mat(e{m1-1,c}(1)),cell2mat(e{m1-1,c}(2)),cell2mat(e{m1-1,c}(3)),cell2mat(e{m1-1,c}(4)),cell2mat(e{m1-1,c}(5)),cell2mat(e{m1-1,c}(6)),cell2mat(e{m1-1,c}(7)),x1,val1};
e(m1-1,c)={e1};
end;
z=val1;
if ((-z)<(-zl))
e1={1,[],[],[],[],[],[],[],0};
e(m1-1,c)={e1};
elseif (abs(round(x1)-x1)<=0.0001)
zl=z
end;
end;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0) 
zu=cell2mat(e{m1-1,c}(9))
end;
end;
for c=1:1:m2
if (-cell2mat(e{m1-1,c}(9))>(-zu))
zu=cell2mat(e{m1-1,c}(9))
end;
end;
end;
for c=1:1:m2
if (cell2mat(e{m1-1,c}(1))==0)&(cell2mat(e{m1-1,c}(9))==zu)
x=cell2mat(e{m1-1,c}(8))
end;
end;
val=-zu;
end;

调用

f = [-1, -5];
A = [-1, 1;
    5, 6;];
b = [2; 30];
Aeq = [];
beq = [];
lb = [0; 0];
ub = [4; inf];
[x,val]=kfz(2,f,A,b,Aeq,beq,lb,ub)

结果:

>> Untitled2
Optimization terminated.
x1 =
    1.6364
    3.6364
val1 =
  -19.8182
zu =
   19.8182
lb1 =
     2
     0
ub2 =
     1
   Inf
Optimization terminated.
Optimization terminated.
zl =
  -16.0000
zu =
  -18.6667
zu =
  -16.0000
zu =
  -18.6667
lb1 =
     2
     4
ub2 =
     4
     3
zl =
  -16.0000
Optimization terminated.
zu =
  -17.4000
lb1 =
     3
     0
ub2 =
     2
     3
Optimization terminated.
Optimization terminated.
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zl =
  -17.0000
zu =
  -17.0000
x =
    2.0000
    3.0000
x =
    2.0000
    3.0000
val =
   17.0000
>> 

5 参考文献

分支界定法 branch-and-bound 分析与实现

运筹学分支定界法MATLAB


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
16天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
16天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
111 68
|
18天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
18天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
24天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
23天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
25天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
188 80
|
26天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
26天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。