m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真

简介: MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。

1.算法仿真效果
matlab2022a仿真结果如下:
image.png

2.算法涉及理论知识概要
低密度奇偶校验码(Low-Density Parity-Check Codes, LDPC codes)因其优秀的纠错能力和接近香农极限的性能而广泛应用于现代通信系统中。有序统计译码(Ordered Statistics Decoding, OSD)是一种基于概率译码准则的软输入软输出译码方法,它通过排序接收符号的概率值来估计最可能的错误位置,进而纠正错误。在OSD中,偏移参数(ΔΔ)的选择对于译码性能至关重要,因为它影响着错误位置的估计精度。基于遗传优化的LDPC码OSD译码算法最优偏移参数计算,就是利用遗传算法的全局搜索能力来寻找最佳的ΔΔ值,以优化译码性能。

    遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局优化算法,用于解决优化和搜索问题。其核心包括以下几个步骤:

编码:将问题的解转换为染色体(个体)的形式。
初始化:创建一个初始种群,通常随机生成。
适应度评估:评价每个个体在解空间中的适应度,即其解决问题的能力。
选择:基于适应度选择个体进行繁殖,适应度高的个体被选中的概率更高。
交叉:模拟生物的遗传过程,通过交换部分染色体信息生成新的后代。
变异:以一定的概率对染色体进行小的随机修改,增加多样性。
终止条件:达到预设的迭代次数或找到满意解后停止。
基于遗传优化的LDPC码OSD译码算法最优偏移参数计算,通过模拟自然选择过程,自动寻优,避免了传统方法中耗时的手动调整和遍历,能有效提升译码性能,尤其是在复杂和高维参数空间中。这种方法不仅适用于Δ的优化,也适用于其他译码参数的优化。

3.MATLAB核心程序
```[V,I] = min(JJ);
bb = phen1(I,:);
N = 2016;
K = 1008;
R = K/N;
%H矩阵
[ H, Hp, Hs ] = func_H();

SNR = 0:0.5:3;
Ber = zeros(1, length(SNR));
Fer = zeros(1, length(SNR));

%译码迭代次数
Iters = 8;

for jj = 1:1:length(SNR)
%仿真帧
Frames = 500;
error1 = 0;
cout = 0;
sigma = sqrt(1/10^(SNR(jj)/10));
for i = 1:1:Frames
[i,SNR(jj) ]

    %编码
    msg         = randi([0, 1], 1, 1008);
    msg_encode  = func_Encoder(Hs, msg);
    %调制
    bpsk_encode = 1 - 2.*msg_encode;

    %AWGN
    bpsk_N      = awgn(bpsk_encode,SNR(jj),'measured');

    %接收
    llr         = 2*bpsk_N/(sigma^2);
    ydecode     = func_OMS( H, llr, bb, Iters );
    errs        = sum(msg ~= ydecode);
    error1      = error1 + errs;
    cout        = cout + 1;
end

Ber(1, jj) = error1/(K * cout);

end

fitness=mean(Ber);

figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);

xlabel('Eb/N0(dB)');
ylabel('Ber');
title(['OMS,GA优化后的alpha = ',num2str(bb)])
grid on;
save OMS3.mat SNR Ber Error2 bb
```

相关文章
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
16天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
118 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
11天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
10天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
16天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
16天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
12天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
25天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80

热门文章

最新文章