基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响

简介: 本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。字符数:239

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
低密度奇偶校验码(Low-Density Parity-Check Codes,LDPC)是一种具有逼近香农限性能的信道编码技术。在现代通信系统中,LDPC 码因其优异的性能而得到了广泛的应用。BP(Belief Propagation)译码算法是 LDPC 码的一种重要译码方法,它通过在 Tanner 图上进行消息传递来实现译码。

2.1 LDPC 码的基本原理

374f0e3b80f5ffcf93bae0a2a1c32ec5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 BP 译码算法原理
BP 译码算法是一种基于消息传递的迭代译码算法。在每次迭代中,消息在变量节点和校验节点之间进行传递。变量节点向校验节点传递的消息表示该变量节点为 “0” 或 “1” 的概率。校验节点向变量节点传递的消息表示根据与其相连的其他变量节点的消息,该校验节点所对应的校验方程是否满足的概率。具体的消息传递规则如下:

9fd3a37c90c29ceeb5d400f8d2aedeea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3 LDPC参数对译码性能的影响
码长的影响

  随着码长的增加,LDPC 码的性能通常会得到提高。这是因为较长的码长可以提供更多的校验信息,从而提高译码的准确性。从数学角度来看,当码长趋于无穷大时,LDPC 码在加性高斯白噪声(AWGN)信道下的性能可以逼近香农限。可以通过分析误码率与码长的关系来验证这一结论。

码率的影响

  码率是信息位长度与码长之比,它决定了编码的效率。一般来说,码率越低,编码的冗余度越高,译码性能越好。对于给定的码长和 SNR,不同的码率会导致不同的误码率性能。可以通过调整码率来平衡编码效率和译码性能。

迭代次数的影响

   迭代次数是 BP 译码算法中的一个重要参数,它决定了消息传递的次数。一般来说,迭代次数越多,译码性能越好,但同时也会增加译码的复杂度和延迟。在一定的 SNR 范围内,随着迭代次数的增加,误码率会逐渐降低。当迭代次数达到一定值后,误码率的改善会变得不明显。

信道类型的影响

   不同的信道类型对 LDPC 码的译码性能有不同的影响。常见的信道类型包括 AWGN 信道、瑞利衰落信道等。在 AWGN 信道下,LDPC 码的性能通常较好,因为噪声是加性的且具有固定的统计特性。在瑞利衰落信道下,信号会经历随机的衰落,这会增加译码的难度。对于不同的信道类型,需要根据其特性来调整 LDPC 码的参数和译码算法,以获得最佳的性能。

3.MATLAB核心程序

for i=1:length(EbN0)

    Bit_err(i) = 0;
    Num_err    = 0;
    Numbers    = 0; %误码率累加器

    while Num_err <= Times(i)
          Num_err
          fprintf('Eb/N0 = %f\n', EbN0(i));
          Trans_data = round(rand(1,N-M));  %产生需要发送的随机数
          ldpc_code  = mod(Trans_data*G,2); %LDPC编码
          Trans_BPSK = 2*ldpc_code-1;       %BPSK

          %通过高斯信道
          sigma      = sqrt(1./(2*10^(EbN0(i)/10)*R));  
          Rec_BPSK   = Trans_BPSK + sigma*randn(1,size(G,2));   

          %LDPC译码 
          z_hat = func_Dec(Rec_BPSK,sigma,H,max_iter);

           x_hat      = z_hat(size(G,2)+1-size(G,1):size(G,2));

         [nberr,rat]  = biterr(x_hat',Trans_data);
          Num_err     = Num_err+nberr;
          Numbers     = Numbers+1;    
    end 
    Bit_err(i)=Num_err/(N*Numbers);
end
figure;
semilogy(EbN0,Bit_err,'o-r');
xlabel('Eb/N0(dB)');
ylabel('BER');
grid on;
if N == 24
   save R_2.mat EbN0 Bit_err
end
if N == 50
   save R_1.mat EbN0 Bit_err
end
if N == 102
   save R0.mat EbN0 Bit_err
end
if N == 204
   save R1.mat EbN0 Bit_err
end
if N == 504
   save R2.mat EbN0 Bit_err
end
if N == 1008
   save R3.mat EbN0 Bit_err
end
0sj_026m
相关文章
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
14天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
47 16
|
28天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
117 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度